--- language: - en license: apache-2.0 tags: - automatic-speech-recognition - en - generated_from_trainer - hf-asr-leaderboard - librispeech_asr - robust-speech-event datasets: - librispeech_asr model-index: - name: XLS-R-300M - English results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: LibriSpeech ASR type: librispeech_asr args: clean metrics: - name: Test WER type: wer value: 12.29 - name: Test CER type: cer value: 3.34 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: en metrics: - name: Validation WER type: wer value: 36.75 - name: Validation CER type: cer value: 14.83 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8.0 type: mozilla-foundation/common_voice_8_0 args: en metrics: - name: Test WER type: wer value: 37.81 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: en metrics: - name: Test WER type: wer value: 38.8 --- # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the librispeech_asr dataset. It achieves the following results on the evaluation set: - Loss: 0.1444 - Wer: 0.1167 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.9365 | 4.17 | 500 | 2.9398 | 0.9999 | | 1.5444 | 8.33 | 1000 | 0.5947 | 0.4289 | | 1.1367 | 12.5 | 1500 | 0.2751 | 0.2366 | | 0.9972 | 16.66 | 2000 | 0.2032 | 0.1797 | | 0.9118 | 20.83 | 2500 | 0.1786 | 0.1479 | | 0.8664 | 24.99 | 3000 | 0.1641 | 0.1408 | | 0.8251 | 29.17 | 3500 | 0.1537 | 0.1267 | | 0.793 | 33.33 | 4000 | 0.1525 | 0.1244 | | 0.785 | 37.5 | 4500 | 0.1470 | 0.1184 | | 0.7612 | 41.66 | 5000 | 0.1446 | 0.1177 | | 0.7478 | 45.83 | 5500 | 0.1449 | 0.1176 | | 0.7443 | 49.99 | 6000 | 0.1444 | 0.1167 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0