File size: 3,292 Bytes
b60c4d7 e10d376 b60c4d7 e10d376 b60c4d7 94f232c 6bd1306 94f232c 3e8f2f7 6bd1306 94f232c 3e8f2f7 073e05e 3e8f2f7 073e05e 3e8f2f7 b60c4d7 e10d376 6bd1306 e10d376 6bd1306 e983d05 073e05e 3e8f2f7 073e05e e10d376 6bd1306 e10d376 6bd1306 e10d376 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 |
---
language:
- km
license: apache-2.0
tags:
- automatic-speech-recognition
- openslr
- robust-speech-event
- km
- generated_from_trainer
model-index:
- name: xls-r-300m-km
results:
- task:
name: Speech Recognition
type: automatic-speech-recognition
dataset:
name: OpenSLR km
type: openslr
args: km
metrics:
- name: Test WER
type: wer
value: 29.59
- name: Test CER
type: cer
value: 7.37
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Robust Speech Event - Dev Data
type: speech-recognition-community-v2/dev_data
args: km
metrics:
- name: Test WER
type: wer
value: 29.59
- name: Test CER
type: cer
value: 7.37
---
#
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the openslr dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3281
- Wer: 0.3462
# Evaluation results on OpenSLR "test" (self-split 10%) (Running ./eval.py):
- WER: 0.3216977389924633
- CER: 0.08653361193169537
# Evaluation results with language model on OpenSLR "test" (self-split 10%) (Running ./eval.py):
- WER: 0.295914319714399
- CER: 0.0737084804380719
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 100
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 5.0795 | 5.47 | 400 | 4.4121 | 1.0 |
| 3.5658 | 10.95 | 800 | 3.5203 | 1.0 |
| 3.3689 | 16.43 | 1200 | 2.8984 | 0.9996 |
| 2.01 | 21.91 | 1600 | 1.0041 | 0.7288 |
| 1.6783 | 27.39 | 2000 | 0.6941 | 0.5989 |
| 1.527 | 32.87 | 2400 | 0.5599 | 0.5282 |
| 1.4278 | 38.35 | 2800 | 0.4827 | 0.4806 |
| 1.3458 | 43.83 | 3200 | 0.4429 | 0.4532 |
| 1.2893 | 49.31 | 3600 | 0.4156 | 0.4330 |
| 1.2441 | 54.79 | 4000 | 0.4020 | 0.4040 |
| 1.188 | 60.27 | 4400 | 0.3777 | 0.3866 |
| 1.1628 | 65.75 | 4800 | 0.3607 | 0.3858 |
| 1.1324 | 71.23 | 5200 | 0.3534 | 0.3604 |
| 1.0969 | 76.71 | 5600 | 0.3428 | 0.3624 |
| 1.0897 | 82.19 | 6000 | 0.3387 | 0.3567 |
| 1.0625 | 87.66 | 6400 | 0.3339 | 0.3499 |
| 1.0601 | 93.15 | 6800 | 0.3288 | 0.3446 |
| 1.0474 | 98.62 | 7200 | 0.3281 | 0.3462 |
### Framework versions
- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2.dev0
- Tokenizers 0.11.0
|