File size: 4,970 Bytes
b60c4d7
 
 
 
 
 
e10d376
b60c4d7
 
e10d376
b37a8c0
b60c4d7
94f232c
 
b37a8c0
94f232c
 
 
 
 
 
 
b37a8c0
 
 
 
 
 
073e05e
b37a8c0
073e05e
 
 
 
 
 
b37a8c0
 
 
 
 
 
b60c4d7
e10d376
 
 
 
 
6bd1306
 
e10d376
6bd1306
 
 
e983d05
073e05e
dfed443
 
073e05e
b72f955
 
 
 
 
 
e10d376
b72f955
e10d376
b72f955
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e10d376
b72f955
 
 
e10d376
b72f955
 
 
 
 
 
 
 
 
 
 
 
 
e10d376
b72f955
 
 
 
 
 
 
e10d376
 
 
 
 
 
 
 
 
 
 
 
 
 
6bd1306
 
e10d376
 
 
 
 
 
6bd1306
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e10d376
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
---
language:
- km
license: apache-2.0
tags:
- automatic-speech-recognition
- openslr
- robust-speech-event
- km
- generated_from_trainer
- hf-asr-leaderboard
model-index:
- name: xls-r-300m-km
  results:
  - task:
      name: Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: OpenSLR km
      type: openslr
      args: km
    metrics:
    - name: Test WER
      type: wer
      value: 25.7
    - name: Test CER
      type: cer
      value: 7.03
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Robust Speech Event - Dev Data
      type: speech-recognition-community-v2/dev_data
      args: km
    metrics:
    - name: Test WER
      type: wer
      value: 25.7
    - name: Test CER
      type: cer
      value: 7.03
---

# 

This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the openslr dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3281
- Wer: 0.3462

# Evaluation results on OpenSLR "test" (self-split 10%) (Running ./eval.py):
- WER: 0.3216977389924633
- CER: 0.08653361193169537

# Evaluation results with language model on OpenSLR "test" (self-split 10%) (Running ./eval.py):
- WER: 0.257040856802856
- CER: 0.07025001801282513

## Installation
Install the following libraries on top of HuggingFace Transformers for the supports of language model.
```
pip install pyctcdecode
pip install https://github.com/kpu/kenlm/archive/master.zip
```

## Usage 

**Approach 1:** Using HuggingFace's pipeline, this will cover everything end-to-end from raw audio input to text output.
```python
from transformers import pipeline

# Load the model
pipe = pipeline(model="vitouphy/wav2vec2-xls-r-300m-khmer")

# Process raw audio
output = pipe("sound_file.wav", chunk_length_s=10, stride_length_s=(4, 2))
```

**Approach 2:** More custom way to predict phonemes.
```python
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC 
import librosa
import torch

# load model and processor
processor = Wav2Vec2Processor.from_pretrained("vitouphy/wav2vec2-xls-r-300m-khmer")
model = Wav2Vec2ForCTC.from_pretrained("vitouphy/wav2vec2-xls-r-300m-khmer")

# Read and process the input
speech_array, sampling_rate = librosa.load("sound_file.wav", sr=16_000)
inputs = processor(speech_array, sampling_rate=16_000, return_tensors="pt", padding=True)

with torch.no_grad():
    logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits

predicted_ids = torch.argmax(logits, axis=-1)      
predicted_sentences = processor.batch_decode(predicted_ids)
print(predicted_sentences)
```

## Intended uses & limitations

The data used for this model is only around 4 hours of recordings. 
- We split into 80/10/10. Hence, the training hour is 3.2 hours, which is very very small.
- Yet, its performance is not too bad. Quite interesting for such small dataset, actually. You can try it out.
- Its limitation is:
  - Rare characters, e.g. ឬស្សី ឪឡឹក 
  - Speech needs to be clear and articulate.
- More data to cover more vocabulary and character may help improve this system.

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 100
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer    |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 5.0795        | 5.47  | 400  | 4.4121          | 1.0    |
| 3.5658        | 10.95 | 800  | 3.5203          | 1.0    |
| 3.3689        | 16.43 | 1200 | 2.8984          | 0.9996 |
| 2.01          | 21.91 | 1600 | 1.0041          | 0.7288 |
| 1.6783        | 27.39 | 2000 | 0.6941          | 0.5989 |
| 1.527         | 32.87 | 2400 | 0.5599          | 0.5282 |
| 1.4278        | 38.35 | 2800 | 0.4827          | 0.4806 |
| 1.3458        | 43.83 | 3200 | 0.4429          | 0.4532 |
| 1.2893        | 49.31 | 3600 | 0.4156          | 0.4330 |
| 1.2441        | 54.79 | 4000 | 0.4020          | 0.4040 |
| 1.188         | 60.27 | 4400 | 0.3777          | 0.3866 |
| 1.1628        | 65.75 | 4800 | 0.3607          | 0.3858 |
| 1.1324        | 71.23 | 5200 | 0.3534          | 0.3604 |
| 1.0969        | 76.71 | 5600 | 0.3428          | 0.3624 |
| 1.0897        | 82.19 | 6000 | 0.3387          | 0.3567 |
| 1.0625        | 87.66 | 6400 | 0.3339          | 0.3499 |
| 1.0601        | 93.15 | 6800 | 0.3288          | 0.3446 |
| 1.0474        | 98.62 | 7200 | 0.3281          | 0.3462 |


### Framework versions

- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2.dev0
- Tokenizers 0.11.0