--- language: - mar license: apache-2.0 tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: whisper_marathi_small_V1 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: mr split: test args: 'config: hi, split: test' metrics: - name: Wer type: wer value: 45.00676938946554 --- # whisper_marathi_small_V1 This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.2754 - Wer: 45.0068 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 10 - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.4794 | 0.41 | 100 | 0.4754 | 59.9317 | | 0.3121 | 0.81 | 200 | 0.3161 | 52.8786 | | 0.2051 | 1.22 | 300 | 0.2900 | 50.2547 | | 0.1887 | 1.63 | 400 | 0.2779 | 48.1336 | | 0.16 | 2.03 | 500 | 0.2679 | 46.2639 | | 0.1131 | 2.44 | 600 | 0.2706 | 45.8449 | | 0.1128 | 2.85 | 700 | 0.2658 | 45.1551 | | 0.0678 | 3.25 | 800 | 0.2763 | 45.2195 | | 0.075 | 3.66 | 900 | 0.2769 | 45.7611 | | 0.0609 | 4.07 | 1000 | 0.2754 | 45.0068 | ### Framework versions - Transformers 4.27.0.dev0 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2