--- base_model: NousResearch/Llama-2-7b-hf library_name: peft metrics: - accuracy - precision - recall - f1 tags: - generated_from_trainer model-index: - name: Experiment-2 results: [] --- # Experiment-2 This model is a fine-tuned version of [NousResearch/Llama-2-7b-hf](https://huggingface.co/NousResearch/Llama-2-7b-hf) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6750 - Accuracy: 0.596 - Precision: 0.5869 - Recall: 0.6263 - F1: 0.6060 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 64 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | No log | 0.9874 | 54 | 0.6970 | 0.532 | 0.5313 | 0.4785 | 0.5035 | | No log | 1.9931 | 109 | 0.6923 | 0.508 | 0.5103 | 0.1989 | 0.2863 | | 0.694 | 2.9989 | 164 | 0.6888 | 0.5413 | 0.5303 | 0.6586 | 0.5875 | | 0.694 | 3.9863 | 218 | 0.6926 | 0.5187 | 0.6279 | 0.0726 | 0.1301 | | 0.694 | 4.992 | 273 | 0.6778 | 0.5947 | 0.6269 | 0.4516 | 0.525 | | 0.6841 | 5.9977 | 328 | 0.6738 | 0.5827 | 0.5582 | 0.7608 | 0.6439 | | 0.6841 | 6.9851 | 382 | 0.6701 | 0.5893 | 0.6301 | 0.4167 | 0.5016 | | 0.6841 | 7.9909 | 437 | 0.6717 | 0.6013 | 0.5835 | 0.6855 | 0.6304 | | 0.6699 | 8.9966 | 492 | 0.6768 | 0.5787 | 0.5553 | 0.7554 | 0.6401 | | 0.6699 | 9.8743 | 540 | 0.6750 | 0.596 | 0.5869 | 0.6263 | 0.6060 | ### Framework versions - PEFT 0.14.0 - Transformers 4.46.3 - Pytorch 2.3.1.post300 - Datasets 3.2.0 - Tokenizers 0.20.3