--- library_name: peft base_model: NousResearch/Llama-2-7b-hf tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: evaluation_model results: [] --- # evaluation_model This model is a fine-tuned version of [NousResearch/Llama-2-7b-hf](https://huggingface.co/NousResearch/Llama-2-7b-hf) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7124 - Accuracy: 0.4667 - Precision: 0.4577 - Recall: 0.9559 - F1: 0.6190 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | No log | 0.9829 | 43 | 0.9195 | 0.5467 | 0.0 | 0.0 | 0.0 | | No log | 1.9943 | 87 | 0.6833 | 0.5667 | 0.5172 | 0.6618 | 0.5806 | | No log | 2.9829 | 130 | 0.6898 | 0.5267 | 0.4884 | 0.9265 | 0.6396 | | 0.8708 | 3.9943 | 174 | 0.6775 | 0.5667 | 0.5149 | 0.7647 | 0.6154 | | 0.8708 | 4.9371 | 215 | 0.7124 | 0.4667 | 0.4577 | 0.9559 | 0.6190 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.2 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3