File size: 15,236 Bytes
30ac3ae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 |
import torch
from torch import nn
import pandas as pd
import numpy as np
import os
import pickle
from tqdm import tqdm
os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID" # see issue #152
os.environ['CUDA_VISIBLE_DEVICES']='1'
df=pd.read_csv('/home/vivek.trivedi/Reviews.csv',sep=",")
reviews=df['Text'].to_numpy()
def mark_sentiment(rating):
if(rating<3):
return 0 # negative
else:
return 1 # positive
labels=df['Score'].apply(mark_sentiment).to_numpy()
print(reviews[:2000])
print(labels[:20])
from string import punctuation
print(punctuation)
all_text = '\n'.join(reviews)
# split by new lines and spaces
reviews_split = all_text.split('\n')
all_text = ' '.join(reviews_split)
# create a list of words
words = all_text.split()
words[:30]
# feel free to use this import
from collections import Counter
## Build a dictionary that maps words to integers
counts = Counter(words)
vocab = sorted(counts, key=counts.get, reverse=True)
vocab_to_int = {word: ii for ii, word in enumerate(vocab,1)}
## use the dict to tokenize each review in reviews_split
## store the tokenized reviews in reviews_ints
reviews_ints = []
for review in reviews_split:
reviews_ints.append([vocab_to_int[word] for word in review.split()])
# stats about vocabulary
print('Unique words: ', len((vocab_to_int))) # should ~ 74000+
print()
# print tokens in first review
print('Tokenized review: \n', reviews_ints[:1])
encoded_labels = labels
# outlier review stats
review_lens = Counter([len(x) for x in reviews_ints])
print("Zero-length reviews: {}".format(review_lens[0]))
print("Maximum review length: {}".format(max(review_lens)))
print('Number of reviews before removing outliers: ', len(reviews_ints))
## remove any reviews/labels with zero length from the reviews_ints list.
## get any indices of any reviews with length 0
non_zero_idx = [ii for ii, review in enumerate(reviews_ints) if len(review) != 0]
# remove 0-length review with their labels
reviews_ints = [reviews_ints[ii] for ii in non_zero_idx]
encoded_labels = np.array([encoded_labels[ii] for ii in non_zero_idx])
print('Number of reviews after removing outliers: ', len(reviews_ints))
def pad_features(reviews_ints, seq_length):
''' Return features of review_ints, where each review is padded with 0's
or truncated to the input seq_length.
'''
## getting the correct rows x cols shape
features = np.zeros((len(reviews_ints), seq_length), dtype=int)
## for each review, I grab that review
for i, row in enumerate(reviews_ints):
features[i, -len(row):] = np.array(row)[:seq_length]
return features
# Test your implementation!
seq_length = int(np.mean(list(review_lens.keys())))
features = pad_features(reviews_ints, seq_length=seq_length)
## test statements - do not change - ##
assert len(features)==len(reviews_ints), "Your features should have as many rows as reviews."
assert len(features[0])==seq_length, "Each feature row should contain seq_length values."
# print first 10 values of the first 30 batches
print(features[:30,:10])
split_frac = 0.8
## split data into training, validation, and test data (features and labels, x and y)
split_idx = int(len(features)*0.8)
train_x, remaining_x = features[:split_idx], features[split_idx:]
train_y, remaining_y = encoded_labels[:split_idx], encoded_labels[split_idx:]
test_idx = int(len(remaining_x))
test_y,val_y = remaining_y[:test_idx], remaining_y[test_idx:]
test_x,val_x = remaining_x[:test_idx], remaining_x[test_idx:]
## print out the shapes of your resultant feature data
print("\t\t\tFeatures Shapes:")
print("Train set: \t\t{}".format(train_x.shape),
"\nValidation set: \t{}".format(val_x.shape),
"\nTest set: \t\t{}".format(test_x.shape))
import torch
from torch.utils.data import TensorDataset, DataLoader
# create Tensor datasets
train_data = TensorDataset(torch.from_numpy(train_x), torch.from_numpy(train_y))
valid_data = TensorDataset(torch.from_numpy(val_x), torch.from_numpy(val_y))
test_data = TensorDataset(torch.from_numpy(test_x), torch.from_numpy(test_y))
# dataloaders
batch_size = 20
# make sure to SHUFFLE your data
_ = torch.manual_seed(100)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
vocab_size = len(vocab_to_int) + 1 # +1 for zero padding + our word tokens
output_size = 1
embedding_dim = 300
hidden_dim = 256
n_layers = 2
n_epoch=10
class MyRNN(nn.Module):
def __init__(self, num_layers, hidden_size):
super(MyRNN, self).__init__()
self.embedding = nn.Embedding(vocab_size, embedding_dim)
self.num_layers = num_layers
self.hidden_size = hidden_size
self.rnn = nn.RNN(
input_size=embedding_dim,
hidden_size=hidden_size,
num_layers=num_layers,
batch_first=True
)
self.fc = nn.Linear(hidden_size,1)
self.sig=nn.Sigmoid()
def forward(self, x):
batch_size = x.size(0)
embeds = self.embedding(x)
hidden_state = self.init_hidden(batch_size).to(device)
output, hidden_state = self.rnn(embeds,hidden_state)
output = self.fc(hidden_state.squeeze())
output=self.sig(output)
#output = output.view(batch_size, -1)
return output[-1]
def init_hidden(self,batch_size):
return torch.zeros(self.num_layers, batch_size, self.hidden_size).to(device)
def accuracy_loss(model,dataset,criterion):
num_correct = 0
num_samples = len(dataset)*batch_size
model.eval()
loss_=0
with torch.no_grad():
for name, label in dataset:
output = model(name.to(device))
loss = criterion(output.float(), label.view(-1,1).to(device).float())
pred = torch.round(output.squeeze())
num_correct += sum(pred == label.to(device)).cpu().numpy()
loss_+=loss.item()
return (num_correct / num_samples,loss_/num_samples)
hiden_size_list=[64*i for i in range(1,6)]
learning_rate_list=[1e-5,1e-4,1e-3,1e-2]
# accuracy_list={}
# for learning_rate in tqdm(learning_rate_list):
# accuracy_list[learning_rate]={}
# for hidden_size in tqdm(hiden_size_list):
# model = MyRNN(2, hidden_size).to(device)
# criterion = nn.BCELoss()
# optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
# for epoch in range(n_epoch):
# acc_epoch=[]
# model.train().to(device)
# train_loader = DataLoader(train_data, shuffle=True, batch_size=batch_size)
# #valid_loader = DataLoader(valid_data, shuffle=True, batch_size=batch_size)
# test_loader = DataLoader(test_data, shuffle=True, batch_size=batch_size)
# for name, label in train_loader:
# model.zero_grad()
# output = model(name.to(device))
# loss = criterion(output.float(), label.view(-1,1).to(device).float())
# loss.backward()
# optimizer.step()
# acc_epoch.append([accuracy_loss(model,train_loader,criterion),accuracy_loss(model,test_loader,criterion)])
# print('learning rate =',learning_rate,'hidden size =',hidden_size,'epoch =',epoch,'\n train accuracy,train loss,test accuracy,test loss',acc_epoch[-1])
# accuracy_list[learning_rate][hidden_size]=acc_epoch
# with open("/home/vivek.trivedi/accuracy_loss_list_RNN.pkl",'wb') as file:
# pickle.dump(accuracy_list,file)
class MyGRU(nn.Module):
def __init__(self, num_layers, hidden_size):
super(MyGRU, self).__init__()
self.embedding = nn.Embedding(vocab_size, embedding_dim)
self.num_layers = num_layers
self.hidden_size = hidden_size
self.gru = nn.GRU(
input_size=embedding_dim,
hidden_size=hidden_size,
num_layers=num_layers,
batch_first=True
)
self.fc = nn.Linear(hidden_size,1)
self.sig=nn.Sigmoid()
def forward(self, x):
batch_size = x.size(0)
embeds = self.embedding(x)
hidden_state = self.init_hidden(batch_size).to(device)
output, hidden_state = self.gru(embeds,hidden_state)
output = self.fc(hidden_state.squeeze())
output=self.sig(output)
#output = output.view(batch_size, -1)
return output[-1]
def init_hidden(self,batch_size):
return torch.zeros(self.num_layers, batch_size, self.hidden_size).to(device)
hiden_size_list=[64*i for i in range(1,6)]
learning_rate_list=[1e-5,1e-4,1e-3,1e-2]
# accuracy_list={}
# for learning_rate in tqdm(learning_rate_list):
# accuracy_list[learning_rate]={}
# for hidden_size in tqdm(hiden_size_list):
# model = MyGRU(2, hidden_size).to(device)
# criterion = nn.BCELoss()
# optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
# acc_epoch=[]
# for epoch in range(n_epoch):
# model.train().to(device)
# train_loader = DataLoader(train_data, shuffle=True, batch_size=batch_size)
# #valid_loader = DataLoader(valid_data, shuffle=True, batch_size=batch_size)
# test_loader = DataLoader(test_data, shuffle=True, batch_size=batch_size)
# for name, label in tqdm(train_loader):
# model.zero_grad()
# output = model(name.to(device))
# loss = criterion(output.float(), label.view(-1,1).to(device).float())
# loss.backward()
# optimizer.step()
# acc_epoch.append([accuracy_loss(model,train_loader,criterion),accuracy_loss(model,test_loader,criterion)])
# print('learning rate =',learning_rate,'hidden size =',hidden_size,'epoch =',epoch,'\n train accuracy,train loss,test accuracy,test loss',acc_epoch[-1])
# accuracy_list[learning_rate][hidden_size]=acc_epoch
# with open("/home/vivek.trivedi/accuracy_loss_list_gru.pkl",'wb') as file:
# pickle.dump(accuracy_list,file)
import torch.nn as nn
class SentimentRNN(nn.Module):
"""
The RNN model that will be used to perform Sentiment analysis.
"""
def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, drop_prob=0.5):
"""
Initialize the model by setting up the layers.
"""
super(SentimentRNN, self).__init__()
self.output_size = output_size
self.n_layers = n_layers
self.hidden_dim = hidden_dim
# embedding and LSTM layers
self.embedding = nn.Embedding(vocab_size, embedding_dim)
self.lstm = nn.LSTM(embedding_dim, hidden_dim, n_layers,
dropout=drop_prob, batch_first=True)
# dropout layer
self.dropout = nn.Dropout(0.3)
# linear and sigmoid layer
self.fc = nn.Linear(hidden_dim, output_size)
self.sig = nn.Sigmoid()
def forward(self, x):
"""
Perform a forward pass of our model on some input and hidden state.
"""
batch_size = x.size(0)
hidden = self.init_hidden(batch_size)
# embeddings and lstm_out
embeds = self.embedding(x)
lstm_out, hidden = self.lstm(embeds, hidden)
# stack up lstm outputs
lstm_out = lstm_out.contiguous().view(-1, self.hidden_dim)
# dropout and fully connected layer
out = self.dropout(lstm_out)
out = self.fc(out)
# sigmoid function
sig_out = self.sig(out)
# reshape to be batch_size first
sig_out = sig_out.view(batch_size, -1)
sig_out = sig_out[:, -1] # get last batch of labels
# return last sigmoid output and hidden state
return sig_out, hidden
def init_hidden(self, batch_size):
''' Initializes hidden state '''
# Create two new tensors with sizes n_layers x batch_size x hidden_dim,
# initialized to zero, for hidden state and cell state of LSTM
weight = next(self.parameters()).data
hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().to(device),
weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().to(device))
return hidden
def accuracy_loss(net,loader):
losses = [] # track loss
num_correct = 0
# init hidden state
net.eval()
# iterate over test data
for inputs, labels in loader:
# Creating new variables for the hidden state, otherwise
# we'd backprop through the entire training history
inputs, labels = inputs.to(device), labels.to(device)
# get predicted outputs
output, h = net(inputs)
# calculate loss
loss = criterion(output.squeeze(), labels.float())
losses.append(loss.item())
# convert output probabilities to predicted class (0 or 1)
pred = torch.round(output.squeeze()) # rounds to the nearest integer
# compare predictions to true label
correct_tensor = pred.eq(labels.float().view_as(pred))
correct = np.squeeze(correct_tensor.cpu().numpy())
num_correct += np.sum(correct)
np.mean(losses)
acc = num_correct/len(loader.dataset)
return acc,np.mean(losses)
# Instantiate the model w/ hyperparams
vocab_size = len(vocab_to_int) + 1 # +1 for zero padding + our word tokens
output_size = 1
embedding_dim = 400
n_layers = 2
accuracy_list={}
for lr in learning_rate_list:
accuracy_list[lr]={}
for hidden_dim in hiden_size_list:
net = SentimentRNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers).to(device)
criterion = nn.BCELoss()
optimizer = torch.optim.Adam(net.parameters(), lr=lr)
counter = 0
print_every = 100
clip=5 # gradient clipping
acc_epoch=[]
for e in range(n_epoch):
train_loader = DataLoader(train_data, shuffle=True, batch_size=batch_size)
#valid_loader = DataLoader(valid_data, shuffle=True, batch_size=batch_size)
test_loader = DataLoader(test_data, shuffle=True, batch_size=batch_size)
# initialize hidden state
# batch loop
net.train()
for inputs, labels in tqdm(train_loader):
counter += 1
inputs, labels = inputs.to(device), labels.to(device)
# Creating new variables for the hidden state, otherwise
# we'd backprop through the entire training history
# zero accumulated gradients
net.zero_grad()
# get the output from the model
output, h = net(inputs)
# calculate the loss and perform backprop
loss = criterion(output.squeeze(), labels.float())
loss.backward()
# `clip_grad_norm` helps prevent the exploding gradient problem in RNNs / LSTMs.
nn.utils.clip_grad_norm_(net.parameters(), clip)
optimizer.step()
acc_epoch.append([accuracy_loss(net,train_loader),accuracy_loss(net,test_loader)])
print('learning rate =',lr,'hidden size =',hidden_dim,'epoch =',e,'\n train accuracy,train loss,test accuracy,test loss',acc_epoch[-1])
accuracy_list[lr][hidden_dim]=acc_epoch
with open("/home/vivek.trivedi/accuracy_loss_list_lstm.pkl",'wb') as file:
pickle.dump(accuracy_list,file)
|