File size: 4,246 Bytes
828992f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 |
"""
Heavily based on: https://github.com/facebookresearch/faiss/blob/master/benchs/bench_gpu_1bn.py
"""
import sys
import time
import math
import faiss
import torch
import numpy as np
from colbert.utils.utils import print_message
class FaissIndexGPU():
def __init__(self):
self.ngpu = faiss.get_num_gpus()
if self.ngpu == 0:
return
self.tempmem = 1 << 33
self.max_add_per_gpu = 1 << 25
self.max_add = self.max_add_per_gpu * self.ngpu
self.add_batch_size = 65536
self.gpu_resources = self._prepare_gpu_resources()
def _prepare_gpu_resources(self):
print_message(f"Preparing resources for {self.ngpu} GPUs.")
gpu_resources = []
for _ in range(self.ngpu):
res = faiss.StandardGpuResources()
if self.tempmem >= 0:
res.setTempMemory(self.tempmem)
gpu_resources.append(res)
return gpu_resources
def _make_vres_vdev(self):
"""
return vectors of device ids and resources useful for gpu_multiple
"""
assert self.ngpu > 0
vres = faiss.GpuResourcesVector()
vdev = faiss.IntVector()
for i in range(self.ngpu):
vdev.push_back(i)
vres.push_back(self.gpu_resources[i])
return vres, vdev
def training_initialize(self, index, quantizer):
"""
The index and quantizer should be owned by caller.
"""
assert self.ngpu > 0
s = time.time()
self.index_ivf = faiss.extract_index_ivf(index)
self.clustering_index = faiss.index_cpu_to_all_gpus(quantizer)
self.index_ivf.clustering_index = self.clustering_index
print(time.time() - s)
def training_finalize(self):
assert self.ngpu > 0
s = time.time()
self.index_ivf.clustering_index = faiss.index_gpu_to_cpu(self.index_ivf.clustering_index)
print(time.time() - s)
def adding_initialize(self, index):
"""
The index should be owned by caller.
"""
assert self.ngpu > 0
self.co = faiss.GpuMultipleClonerOptions()
self.co.useFloat16 = True
self.co.useFloat16CoarseQuantizer = False
self.co.usePrecomputed = False
self.co.indicesOptions = faiss.INDICES_CPU
self.co.verbose = True
self.co.reserveVecs = self.max_add
self.co.shard = True
assert self.co.shard_type in (0, 1, 2)
self.vres, self.vdev = self._make_vres_vdev()
self.gpu_index = faiss.index_cpu_to_gpu_multiple(self.vres, self.vdev, index, self.co)
def add(self, index, data, offset):
assert self.ngpu > 0
t0 = time.time()
nb = data.shape[0]
for i0 in range(0, nb, self.add_batch_size):
i1 = min(i0 + self.add_batch_size, nb)
xs = data[i0:i1]
self.gpu_index.add_with_ids(xs, np.arange(offset+i0, offset+i1))
if self.max_add > 0 and self.gpu_index.ntotal > self.max_add:
self._flush_to_cpu(index, nb, offset)
print('\r%d/%d (%.3f s) ' % (i0, nb, time.time() - t0), end=' ')
sys.stdout.flush()
if self.gpu_index.ntotal > 0:
self._flush_to_cpu(index, nb, offset)
assert index.ntotal == offset+nb, (index.ntotal, offset+nb, offset, nb)
print(f"add(.) time: %.3f s \t\t--\t\t index.ntotal = {index.ntotal}" % (time.time() - t0))
def _flush_to_cpu(self, index, nb, offset):
print("Flush indexes to CPU")
for i in range(self.ngpu):
index_src_gpu = faiss.downcast_index(self.gpu_index if self.ngpu == 1 else self.gpu_index.at(i))
index_src = faiss.index_gpu_to_cpu(index_src_gpu)
index_src.copy_subset_to(index, 0, offset, offset+nb)
index_src_gpu.reset()
index_src_gpu.reserveMemory(self.max_add)
if self.ngpu > 1:
try:
self.gpu_index.sync_with_shard_indexes()
except:
self.gpu_index.syncWithSubIndexes()
|