File size: 7,018 Bytes
828992f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 |
import os
import tqdm
import torch
import datetime
import itertools
from multiprocessing import Pool
from collections import OrderedDict, defaultdict
def print_message(*s, condition=True):
s = ' '.join([str(x) for x in s])
msg = "[{}] {}".format(datetime.datetime.now().strftime("%b %d, %H:%M:%S"), s)
if condition:
print(msg, flush=True)
return msg
def timestamp():
format_str = "%Y-%m-%d_%H.%M.%S"
result = datetime.datetime.now().strftime(format_str)
return result
def file_tqdm(file):
print(f"#> Reading {file.name}")
with tqdm.tqdm(total=os.path.getsize(file.name) / 1024.0 / 1024.0, unit="MiB") as pbar:
for line in file:
yield line
pbar.update(len(line) / 1024.0 / 1024.0)
pbar.close()
def save_checkpoint(path, epoch_idx, mb_idx, model, optimizer, arguments=None):
print(f"#> Saving a checkpoint to {path} ..")
if hasattr(model, 'module'):
model = model.module # extract model from a distributed/data-parallel wrapper
checkpoint = {}
checkpoint['epoch'] = epoch_idx
checkpoint['batch'] = mb_idx
checkpoint['model_state_dict'] = model.state_dict()
checkpoint['optimizer_state_dict'] = optimizer.state_dict()
checkpoint['arguments'] = arguments
torch.save(checkpoint, path)
def load_checkpoint(path, model, optimizer=None, do_print=True):
if do_print:
print_message("#> Loading checkpoint", path, "..")
if path.startswith("http:") or path.startswith("https:"):
checkpoint = torch.hub.load_state_dict_from_url(path, map_location='cpu')
else:
checkpoint = torch.load(path, map_location='cpu')
state_dict = checkpoint['model_state_dict']
new_state_dict = OrderedDict()
for k, v in state_dict.items():
name = k
if k[:7] == 'module.':
name = k[7:]
new_state_dict[name] = v
checkpoint['model_state_dict'] = new_state_dict
try:
model.load_state_dict(checkpoint['model_state_dict'])
except:
print_message("[WARNING] Loading checkpoint with strict=False")
model.load_state_dict(checkpoint['model_state_dict'], strict=False)
if optimizer:
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
if do_print:
print_message("#> checkpoint['epoch'] =", checkpoint['epoch'])
print_message("#> checkpoint['batch'] =", checkpoint['batch'])
return checkpoint
def create_directory(path):
if os.path.exists(path):
print('\n')
print_message("#> Note: Output directory", path, 'already exists\n\n')
else:
print('\n')
print_message("#> Creating directory", path, '\n\n')
os.makedirs(path)
# def batch(file, bsize):
# while True:
# L = [ujson.loads(file.readline()) for _ in range(bsize)]
# yield L
# return
def f7(seq):
"""
Source: https://stackoverflow.com/a/480227/1493011
"""
seen = set()
return [x for x in seq if not (x in seen or seen.add(x))]
def batch(group, bsize, provide_offset=False):
offset = 0
while offset < len(group):
L = group[offset: offset + bsize]
yield ((offset, L) if provide_offset else L)
offset += len(L)
return
class dotdict(dict):
"""
dot.notation access to dictionary attributes
Credit: derek73 @ https://stackoverflow.com/questions/2352181
"""
__getattr__ = dict.__getitem__
__setattr__ = dict.__setitem__
__delattr__ = dict.__delitem__
def flatten(L):
return [x for y in L for x in y]
def zipstar(L, lazy=False):
"""
A much faster A, B, C = zip(*[(a, b, c), (a, b, c), ...])
May return lists or tuples.
"""
if len(L) == 0:
return L
width = len(L[0])
if width < 100:
return [[elem[idx] for elem in L] for idx in range(width)]
L = zip(*L)
return L if lazy else list(L)
def zip_first(L1, L2):
length = len(L1) if type(L1) in [tuple, list] else None
L3 = list(zip(L1, L2))
assert length in [None, len(L3)], "zip_first() failure: length differs!"
return L3
def int_or_float(val):
if '.' in val:
return float(val)
return int(val)
def load_ranking(path, types=None, lazy=False):
print_message(f"#> Loading the ranked lists from {path} ..")
try:
lists = torch.load(path)
lists = zipstar([l.tolist() for l in tqdm.tqdm(lists)], lazy=lazy)
except:
if types is None:
types = itertools.cycle([int_or_float])
with open(path) as f:
lists = [[typ(x) for typ, x in zip_first(types, line.strip().split('\t'))]
for line in file_tqdm(f)]
return lists
def save_ranking(ranking, path):
lists = zipstar(ranking)
lists = [torch.tensor(l) for l in lists]
torch.save(lists, path)
return lists
def groupby_first_item(lst):
groups = defaultdict(list)
for first, *rest in lst:
rest = rest[0] if len(rest) == 1 else rest
groups[first].append(rest)
return groups
def process_grouped_by_first_item(lst):
"""
Requires items in list to already be grouped by first item.
"""
groups = defaultdict(list)
started = False
last_group = None
for first, *rest in lst:
rest = rest[0] if len(rest) == 1 else rest
if started and first != last_group:
yield (last_group, groups[last_group])
assert first not in groups, f"{first} seen earlier --- violates precondition."
groups[first].append(rest)
last_group = first
started = True
return groups
def grouper(iterable, n, fillvalue=None):
"""
Collect data into fixed-length chunks or blocks
Example: grouper('ABCDEFG', 3, 'x') --> ABC DEF Gxx"
Source: https://docs.python.org/3/library/itertools.html#itertools-recipes
"""
args = [iter(iterable)] * n
return itertools.zip_longest(*args, fillvalue=fillvalue)
# see https://stackoverflow.com/a/45187287
class NullContextManager(object):
def __init__(self, dummy_resource=None):
self.dummy_resource = dummy_resource
def __enter__(self):
return self.dummy_resource
def __exit__(self, *args):
pass
def load_batch_backgrounds(args, qids):
if args.qid2backgrounds is None:
return None
qbackgrounds = []
for qid in qids:
back = args.qid2backgrounds[qid]
if len(back) and type(back[0]) == int:
x = [args.collection[pid] for pid in back]
else:
x = [args.collectionX.get(pid, '') for pid in back]
x = ' [SEP] '.join(x)
qbackgrounds.append(x)
return qbackgrounds
|