|
import os
|
|
import math
|
|
import faiss
|
|
import torch
|
|
import numpy as np
|
|
|
|
import threading
|
|
import queue
|
|
|
|
from colbert.utils.utils import print_message, grouper
|
|
from colbert.indexing.loaders import get_parts
|
|
from colbert.indexing.index_manager import load_index_part
|
|
from colbert.indexing.faiss_index import FaissIndex
|
|
|
|
|
|
def get_faiss_index_name(args, offset=None, endpos=None):
|
|
partitions_info = '' if args.partitions is None else f'.{args.partitions}'
|
|
range_info = '' if offset is None else f'.{offset}-{endpos}'
|
|
|
|
return f'ivfpq{partitions_info}{range_info}.faiss'
|
|
|
|
|
|
def load_sample(samples_paths, sample_fraction=None):
|
|
sample = []
|
|
|
|
for filename in samples_paths:
|
|
print_message(f"#> Loading {filename} ...")
|
|
part = load_index_part(filename)
|
|
if sample_fraction:
|
|
part = part[torch.randint(0, high=part.size(0), size=(int(part.size(0) * sample_fraction),))]
|
|
sample.append(part)
|
|
|
|
sample = torch.cat(sample).float().numpy()
|
|
|
|
print("#> Sample has shape", sample.shape)
|
|
|
|
return sample
|
|
|
|
|
|
def prepare_faiss_index(slice_samples_paths, partitions, sample_fraction=None):
|
|
training_sample = load_sample(slice_samples_paths, sample_fraction=sample_fraction)
|
|
|
|
dim = training_sample.shape[-1]
|
|
index = FaissIndex(dim, partitions)
|
|
|
|
print_message("#> Training with the vectors...")
|
|
|
|
index.train(training_sample)
|
|
|
|
print_message("Done training!\n")
|
|
|
|
return index
|
|
|
|
|
|
SPAN = 3
|
|
|
|
|
|
def index_faiss(args):
|
|
print_message("#> Starting..")
|
|
|
|
parts, parts_paths, samples_paths = get_parts(args.index_path)
|
|
|
|
if args.sample is not None:
|
|
assert args.sample, args.sample
|
|
print_message(f"#> Training with {round(args.sample * 100.0, 1)}% of *all* embeddings (provided --sample).")
|
|
samples_paths = parts_paths
|
|
|
|
num_parts_per_slice = math.ceil(len(parts) / args.slices)
|
|
|
|
for slice_idx, part_offset in enumerate(range(0, len(parts), num_parts_per_slice)):
|
|
part_endpos = min(part_offset + num_parts_per_slice, len(parts))
|
|
|
|
slice_parts_paths = parts_paths[part_offset:part_endpos]
|
|
slice_samples_paths = samples_paths[part_offset:part_endpos]
|
|
|
|
if args.slices == 1:
|
|
faiss_index_name = get_faiss_index_name(args)
|
|
else:
|
|
faiss_index_name = get_faiss_index_name(args, offset=part_offset, endpos=part_endpos)
|
|
|
|
output_path = os.path.join(args.index_path, faiss_index_name)
|
|
print_message(f"#> Processing slice #{slice_idx+1} of {args.slices} (range {part_offset}..{part_endpos}).")
|
|
print_message(f"#> Will write to {output_path}.")
|
|
|
|
assert not os.path.exists(output_path), output_path
|
|
|
|
index = prepare_faiss_index(slice_samples_paths, args.partitions, args.sample)
|
|
|
|
loaded_parts = queue.Queue(maxsize=1)
|
|
|
|
def _loader_thread(thread_parts_paths):
|
|
for filenames in grouper(thread_parts_paths, SPAN, fillvalue=None):
|
|
sub_collection = [load_index_part(filename) for filename in filenames if filename is not None]
|
|
sub_collection = torch.cat(sub_collection)
|
|
sub_collection = sub_collection.float().numpy()
|
|
loaded_parts.put(sub_collection)
|
|
|
|
thread = threading.Thread(target=_loader_thread, args=(slice_parts_paths,))
|
|
thread.start()
|
|
|
|
print_message("#> Indexing the vectors...")
|
|
|
|
for filenames in grouper(slice_parts_paths, SPAN, fillvalue=None):
|
|
print_message("#> Loading", filenames, "(from queue)...")
|
|
sub_collection = loaded_parts.get()
|
|
|
|
print_message("#> Processing a sub_collection with shape", sub_collection.shape)
|
|
index.add(sub_collection)
|
|
|
|
print_message("Done indexing!")
|
|
|
|
index.save(output_path)
|
|
|
|
print_message(f"\n\nDone! All complete (for slice #{slice_idx+1} of {args.slices})!")
|
|
|
|
thread.join()
|
|
|