mColBERT / colbert /modeling /inference.py
vjeronymo2's picture
Adding model and checkpoint
828992f
import torch
from colbert.modeling.colbert import ColBERT
from colbert.modeling.tokenization import QueryTokenizer, DocTokenizer
from colbert.utils.amp import MixedPrecisionManager
from colbert.parameters import DEVICE
class ModelInference():
def __init__(self, colbert: ColBERT, amp=False):
assert colbert.training is False
self.colbert = colbert
self.query_tokenizer = QueryTokenizer(colbert.query_maxlen)
self.doc_tokenizer = DocTokenizer(colbert.doc_maxlen)
self.amp_manager = MixedPrecisionManager(amp)
def query(self, *args, to_cpu=False, **kw_args):
with torch.no_grad():
with self.amp_manager.context():
Q = self.colbert.query(*args, **kw_args)
return Q.cpu() if to_cpu else Q
def doc(self, *args, to_cpu=False, **kw_args):
with torch.no_grad():
with self.amp_manager.context():
D = self.colbert.doc(*args, **kw_args)
return D.cpu() if to_cpu else D
def queryFromText(self, queries, bsize=None, to_cpu=False):
if bsize:
batches = self.query_tokenizer.tensorize(queries, bsize=bsize)
batches = [self.query(input_ids, attention_mask, to_cpu=to_cpu) for input_ids, attention_mask in batches]
return torch.cat(batches)
input_ids, attention_mask = self.query_tokenizer.tensorize(queries)
return self.query(input_ids, attention_mask)
def docFromText(self, docs, bsize=None, keep_dims=True, to_cpu=False):
if bsize:
batches, reverse_indices = self.doc_tokenizer.tensorize(docs, bsize=bsize)
batches = [self.doc(input_ids, attention_mask, keep_dims=keep_dims, to_cpu=to_cpu)
for input_ids, attention_mask in batches]
if keep_dims:
D = _stack_3D_tensors(batches)
return D[reverse_indices]
D = [d for batch in batches for d in batch]
return [D[idx] for idx in reverse_indices.tolist()]
input_ids, attention_mask = self.doc_tokenizer.tensorize(docs)
return self.doc(input_ids, attention_mask, keep_dims=keep_dims)
def score(self, Q, D, mask=None, lengths=None, explain=False):
if lengths is not None:
assert mask is None, "don't supply both mask and lengths"
mask = torch.arange(D.size(1), device=DEVICE) + 1
mask = mask.unsqueeze(0) <= lengths.to(DEVICE).unsqueeze(-1)
scores = (D @ Q)
scores = scores if mask is None else scores * mask.unsqueeze(-1)
scores = scores.max(1)
if explain:
assert False, "TODO"
return scores.values.sum(-1).cpu()
def _stack_3D_tensors(groups):
bsize = sum([x.size(0) for x in groups])
maxlen = max([x.size(1) for x in groups])
hdim = groups[0].size(2)
output = torch.zeros(bsize, maxlen, hdim, device=groups[0].device, dtype=groups[0].dtype)
offset = 0
for x in groups:
endpos = offset + x.size(0)
output[offset:endpos, :x.size(1)] = x
offset = endpos
return output