vjeronymo2's picture
Adding model and checkpoint
828992f
import torch
def tensorize_triples(query_tokenizer, doc_tokenizer, queries, positives, negatives, bsize):
assert len(queries) == len(positives) == len(negatives)
assert bsize is None or len(queries) % bsize == 0
N = len(queries)
Q_ids, Q_mask = query_tokenizer.tensorize(queries)
D_ids, D_mask = doc_tokenizer.tensorize(positives + negatives)
D_ids, D_mask = D_ids.view(2, N, -1), D_mask.view(2, N, -1)
# Compute max among {length of i^th positive, length of i^th negative} for i \in N
maxlens = D_mask.sum(-1).max(0).values
# Sort by maxlens
indices = maxlens.sort().indices
Q_ids, Q_mask = Q_ids[indices], Q_mask[indices]
D_ids, D_mask = D_ids[:, indices], D_mask[:, indices]
(positive_ids, negative_ids), (positive_mask, negative_mask) = D_ids, D_mask
query_batches = _split_into_batches(Q_ids, Q_mask, bsize)
positive_batches = _split_into_batches(positive_ids, positive_mask, bsize)
negative_batches = _split_into_batches(negative_ids, negative_mask, bsize)
batches = []
for (q_ids, q_mask), (p_ids, p_mask), (n_ids, n_mask) in zip(query_batches, positive_batches, negative_batches):
Q = (torch.cat((q_ids, q_ids)), torch.cat((q_mask, q_mask)))
D = (torch.cat((p_ids, n_ids)), torch.cat((p_mask, n_mask)))
batches.append((Q, D))
return batches
def _sort_by_length(ids, mask, bsize):
if ids.size(0) <= bsize:
return ids, mask, torch.arange(ids.size(0))
indices = mask.sum(-1).sort().indices
reverse_indices = indices.sort().indices
return ids[indices], mask[indices], reverse_indices
def _split_into_batches(ids, mask, bsize):
batches = []
for offset in range(0, ids.size(0), bsize):
batches.append((ids[offset:offset+bsize], mask[offset:offset+bsize]))
return batches