mColBERT / colbert /ranking /reranking.py
vjeronymo2's picture
Adding model and checkpoint
828992f
import os
import time
import faiss
import random
import torch
from colbert.utils.runs import Run
from multiprocessing import Pool
from colbert.modeling.inference import ModelInference
from colbert.evaluation.ranking_logger import RankingLogger
from colbert.utils.utils import print_message, batch
from colbert.ranking.rankers import Ranker
def rerank(args):
inference = ModelInference(args.colbert, amp=args.amp)
ranker = Ranker(args, inference, faiss_depth=None)
ranking_logger = RankingLogger(Run.path, qrels=None)
milliseconds = 0
with ranking_logger.context('ranking.tsv', also_save_annotations=False) as rlogger:
queries = args.queries
qids_in_order = list(queries.keys())
for qoffset, qbatch in batch(qids_in_order, 100, provide_offset=True):
qbatch_text = [queries[qid] for qid in qbatch]
qbatch_pids = [args.topK_pids[qid] for qid in qbatch]
rankings = []
for query_idx, (q, pids) in enumerate(zip(qbatch_text, qbatch_pids)):
torch.cuda.synchronize('cuda:0')
s = time.time()
Q = ranker.encode([q])
pids, scores = ranker.rank(Q, pids=pids)
torch.cuda.synchronize()
milliseconds += (time.time() - s) * 1000.0
if len(pids):
print(qoffset+query_idx, q, len(scores), len(pids), scores[0], pids[0],
milliseconds / (qoffset+query_idx+1), 'ms')
rankings.append(zip(pids, scores))
for query_idx, (qid, ranking) in enumerate(zip(qbatch, rankings)):
query_idx = qoffset + query_idx
if query_idx % 100 == 0:
print_message(f"#> Logging query #{query_idx} (qid {qid}) now...")
ranking = [(score, pid, None) for pid, score in ranking]
rlogger.log(qid, ranking, is_ranked=True)
print('\n\n')
print(ranking_logger.filename)
print("#> Done.")
print('\n\n')