import os import random from colbert.utils.parser import Arguments from colbert.utils.runs import Run from colbert.evaluation.loaders import load_colbert, load_qrels, load_queries, load_topK_pids from colbert.ranking.reranking import rerank from colbert.ranking.batch_reranking import batch_rerank def main(): random.seed(12345) parser = Arguments(description='Re-ranking over a ColBERT index') parser.add_model_parameters() parser.add_model_inference_parameters() parser.add_reranking_input() parser.add_index_use_input() parser.add_argument('--step', dest='step', default=1, type=int) parser.add_argument('--part-range', dest='part_range', default=None, type=str) parser.add_argument('--log-scores', dest='log_scores', default=False, action='store_true') parser.add_argument('--batch', dest='batch', default=False, action='store_true') parser.add_argument('--depth', dest='depth', default=1000, type=int) args = parser.parse() if args.part_range: part_offset, part_endpos = map(int, args.part_range.split('..')) args.part_range = range(part_offset, part_endpos) with Run.context(): args.colbert, args.checkpoint = load_colbert(args) args.queries = load_queries(args.queries) args.qrels = load_qrels(args.qrels) args.topK_pids, args.qrels = load_topK_pids(args.topK, qrels=args.qrels) args.index_path = os.path.join(args.index_root, args.index_name) if args.batch: batch_rerank(args) else: rerank(args) if __name__ == "__main__": main()