from typing import Any, Dict import torch import transformers from transformers import AutoModelForCausalLM, AutoTokenizer # Set dtype based on device capability dtype = torch.bfloat16 if torch.cuda.is_available() and torch.cuda.get_device_capability()[0] == 8 else torch.float16 class EndpointHandler: def __init__(self, path="vkamra/llama_finetune_clockit"): # Load tokenizer tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True) tokenizer.padding_side = "left" # For proper padding alignment # Load model with fallback for non-8bit environments if torch.cuda.is_available(): model = AutoModelForCausalLM.from_pretrained( path, return_dict=True, device_map="auto", load_in_8bit=True, torch_dtype=dtype, trust_remote_code=True, ) else: model = AutoModelForCausalLM.from_pretrained( path, return_dict=True, torch_dtype=torch.float32, # Full precision for CPU trust_remote_code=True, ) # Configure generation settings generation_config = model.generation_config generation_config.max_new_tokens = 60 generation_config.temperature = 0.7 generation_config.num_return_sequences = 1 generation_config.pad_token_id = tokenizer.eos_token_id generation_config.eos_token_id = tokenizer.eos_token_id self.generation_config = generation_config # Initialize pipeline self.pipeline = transformers.pipeline( "text-generation", model=model, tokenizer=tokenizer ) def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]: prompt = data.pop("inputs", data) result = self.pipeline(prompt, generation_config=self.generation_config) return result