Qwen-LLaMAfied-HFTok-7B-Chat / eval /evaluate_chatml_mmlu.py
vonjack
Initial
920f20e
import os
import pandas as pd
import numpy as np
import argparse
import datasets
import torch
import re
from thefuzz import process
from typing import List
from tqdm import tqdm
from transformers.trainer_utils import set_seed
'''
wget https://people.eecs.berkeley.edu/~hendrycks/data.tar
mkdir data/mmlu
mv data.tar data/mmlu
cd data/mmlu; tar xf data.tar
cd ../../
pip install thefuzz
python eval/evaluate_chat_mmlu.py -d data/mmlu/data/
'''
from typing import Tuple, List, Union, Iterable
import numpy as np
import torch
import torch.nn.functional as F
from transformers import PreTrainedTokenizer
from transformers import logging
from transformers.generation import LogitsProcessor
from typing import TYPE_CHECKING, Optional, Tuple, Union, Callable, List
HistoryType = List[Tuple[str, str]]
TokensType = List[int]
BatchTokensType = List[List[int]]
def make_context(
tokenizer: PreTrainedTokenizer,
query: str,
history: List[Tuple[str, str]] = None,
system: str = "",
max_window_size: int = 6144,
chat_format: str = "chatml",
):
if history is None:
history = []
im_start, im_end = "<|im_start|>", "<|im_end|>"
im_start_tokens = [tokenizer.im_start_id]
im_end_tokens = [tokenizer.im_end_id]
nl_tokens = tokenizer.encode("\n")
def _tokenize_str(role, content):
return f"{role}\n{content}", tokenizer.encode(
role
) + nl_tokens + tokenizer.encode(content)
system_text, system_tokens_part = _tokenize_str("system", system)
system_tokens = im_start_tokens + system_tokens_part + im_end_tokens
raw_text = ""
context_tokens = []
for turn_query, turn_response in reversed(history):
query_text, query_tokens_part = _tokenize_str("user", turn_query)
query_tokens = im_start_tokens + query_tokens_part + im_end_tokens
response_text, response_tokens_part = _tokenize_str(
"assistant", turn_response
)
response_tokens = im_start_tokens + response_tokens_part + im_end_tokens
next_context_tokens = nl_tokens + query_tokens + nl_tokens + response_tokens
prev_chat = (
f"\n{im_start}{query_text}{im_end}\n{im_start}{response_text}{im_end}"
)
current_context_size = (
len(system_tokens) + len(next_context_tokens) + len(context_tokens)
)
if current_context_size < max_window_size:
context_tokens = next_context_tokens + context_tokens
raw_text = prev_chat + raw_text
else:
break
context_tokens = system_tokens + context_tokens
raw_text = f"{im_start}{system_text}{im_end}" + raw_text
context_tokens += (
nl_tokens
+ im_start_tokens
+ _tokenize_str("user", query)[1]
+ im_end_tokens
+ nl_tokens
+ im_start_tokens
+ tokenizer.encode("assistant")
+ nl_tokens
)
raw_text += f"\n{im_start}user\n{query}{im_end}\n{im_start}assistant\n"
return raw_text, context_tokens
def chat(
model,
tokenizer: PreTrainedTokenizer,
query: str,
history: Optional[HistoryType],
system: str = "You are a helpful assistant.",
append_history: bool = True
) -> Tuple[str, HistoryType]:
if history is None:
history = []
raw_text, context_tokens = make_context(
tokenizer,
query,
history=history,
system=system,
max_window_size=6144,
chat_format = "chatml",
)
stop_words_ids = [[tokenizer.im_end_id], [tokenizer.im_start_id]]
input_ids = torch.tensor([context_tokens]).cuda()
outputs = model.generate(
input_ids,
stop_words_ids = stop_words_ids,
return_dict_in_generate = False,
)
response = decode_tokens(
outputs[0],
tokenizer,
raw_text_len=len(raw_text),
context_length=len(context_tokens),
chat_format='chatml',
verbose=False,
)
if append_history:
history.append((query, response))
return response, history
def decode_tokens(
tokens: Union[torch.LongTensor, TokensType],
tokenizer: PreTrainedTokenizer,
raw_text_len: int,
context_length: int,
chat_format: str = "chatml",
verbose: bool = False,
return_end_reason: bool = False,
) -> str:
if torch.is_tensor(tokens):
tokens = tokens.cpu().numpy().tolist()
return _decode_chatml(
tokens,
stop_words=[],
eod_token_ids=[tokenizer.im_start_id, tokenizer.im_end_id],
tokenizer=tokenizer,
raw_text_len=raw_text_len,
context_length=context_length,
verbose=verbose,
return_end_reason=return_end_reason,
)
def _decode_chatml(
tokens: List[int],
*,
stop_words: List[str],
eod_token_ids: List[int],
tokenizer: PreTrainedTokenizer,
raw_text_len: int,
context_length: int,
verbose: bool = False,
return_end_reason: bool = False,
chat_format = "chatml",
):
end_reason = f"Gen length {len(tokens)}"
eod_token_idx = context_length
for eod_token_idx in range(context_length, len(tokens)):
if tokens[eod_token_idx] in eod_token_ids:
end_reason = f"Gen {tokenizer.decode([tokens[eod_token_idx]])!r}"
break
trim_decode_tokens = tokenizer.decode(tokens[:eod_token_idx])[raw_text_len:]
if verbose:
print("\nRaw Generate w/o EOD:", tokenizer.decode(tokens)[raw_text_len:])
print("\nRaw Generate:", trim_decode_tokens)
print("\nEnd Reason:", end_reason)
for stop_word in stop_words:
trim_decode_tokens = trim_decode_tokens.replace(stop_word, "").strip()
trim_decode_tokens = trim_decode_tokens.strip()
if verbose:
print("\nGenerate:", trim_decode_tokens)
if return_end_reason:
return trim_decode_tokens, end_reason
else:
return trim_decode_tokens
def load_models_tokenizer(args):
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers.generation import GenerationConfig
tokenizer = AutoTokenizer.from_pretrained(args.checkpoint_path, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(args.checkpoint_path, device_map="auto", trust_remote_code=True).eval()
model.generation_config = GenerationConfig.from_pretrained(args.checkpoint_path, trust_remote_code=True)
model.generation_config.do_sample = False # use greedy decoding
return model, tokenizer
def format_example(line):
example = 'The following is a multiple-choice question. Please choose the most suitable one among A, B, C and D as the answer to this question.\n\n' + line['question'] + "\n"
for choice in choices:
example += f'{choice}. {line[f"{choice}"]}\n'
return example
def process_before_extraction(gen, choice_dict):
# replace the choice by letter in the generated sentence
# from longest one to shortest one
for key, val in sorted(choice_dict.items(), key=lambda x: len(x[1]), reverse=True):
pattern = re.compile(re.escape(val.rstrip(".")), re.IGNORECASE)
gen = pattern.sub(key, gen)
return gen
def extract_choice(gen, choice_list):
# answer is A | choice is A | choose A
res = re.search(r"(?:(?:[Cc]hoose)|(?:(?:[Aa]nswer|[Cc]hoice)(?![^ABCD]{0,20}?(?:n't|not))[^ABCD]{0,10}?\b(?:|is|:|be))\b)[^ABCD]{0,20}?\b(A|B|C|D)\b", gen)
# A is correct | A is right
if res is None:
res = re.search(r"\b(A|B|C|D)\b(?![^ABCD]{0,8}?(?:n't|not)[^ABCD]{0,5}?(?:correct|right))[^ABCD]{0,10}?\b(?:correct|right)\b", gen)
# straight answer: A
if res is None:
res = re.search(r"^(A|B|C|D)(?:\.|,|:|$)", gen)
# simply extract the first appearred letter
if res is None:
res = re.search(r"(?<![a-zA-Z])(A|B|C|D)(?![a-zA-Z=])", gen)
if res is None:
return choices[choice_list.index(process.extractOne(gen, choice_list)[0])]
else:
return res.group(1)
def extract_answer(response, row):
gen = process_before_extraction(response, {choice: row[choice] for choice in choices})
pred = extract_choice(gen, [row[choice] for choice in choices])
return pred
@torch.no_grad()
def eval_subject(
model,
tokenizer,
subject_name,
test_df,
save_result_dir=None,
overwrite=False,
**kwargs
):
result_path = os.path.join(save_result_dir, f'{subject_name}_result.csv')
if not overwrite and os.path.exists(result_path):
print(f"{result_path} existed, skip!")
score = []
for (_, datarow), (_, resultrow) in zip(test_df.iterrows(), pd.read_csv(result_path).iterrows()):
# pred = extract_answer(resultrow['model_response'], datarow)
pred = resultrow['model_output']
correct = 1 if pred == datarow['answer'] else 0
score.append(correct)
return score
result = []
score = []
for _, row in tqdm(test_df.iterrows(), total=len(test_df)):
question = format_example(row)
response, history = chat(
model,
tokenizer,
question,
history=None,
)
print(question)
print(response)
pred = extract_answer(response, row)
print(pred)
print("======================")
if 'answer' in row:
correct = 1 if pred == row['answer'] else 0
score.append(correct)
if args.debug: print(f'{question} pred: {pred} ref: {row["answer"]}')
result.append(pred)
if save_result_dir:
test_df['model_output'] = result
test_df['model_response'] = response
if score:
test_df["correctness"] = score
os.makedirs(save_result_dir, exist_ok=True)
test_df.to_csv(os.path.join(
save_result_dir, f'{subject_name}_result.csv'), encoding="utf-8", index=False)
return score
def cal_mmlu(res):
acc_sum_dict = dict()
acc_norm_sum_dict = dict()
cnt_dict = dict()
acc_sum = 0.
cnt = 0
hard_cnt = 0
hard_acc_sum = 0.
for class_ in TASK_NAME_MAPPING.keys():
acc_sum_dict[class_] = 0.
acc_norm_sum_dict[class_] = 0.
cnt_dict[class_] = 0.
for tt in TASK_NAME_MAPPING[class_]:
acc_sum += sum(res[tt])
cnt += len(res[tt])
acc_sum_dict[class_] += sum(res[tt])
cnt_dict[class_] += len(res[tt])
print('\n\n\n')
for k in TASK_NAME_MAPPING.keys():
if k in cnt_dict:
print('%s ACC: %.2f ' % (
k, acc_sum_dict[k] * 100 / cnt_dict[k]))
print('AVERAGE ACC:%.2f ' % (acc_sum *100 / cnt))
def main(args):
print("loading model weights")
if args.checkpoint_path is not None:
model, tokenizer = load_models_tokenizer(args)
else:
model, tokenizer = None, None
print("model loaded")
dev_result = {}
for subject_name in tqdm(SUBJECTS):
# val_file_path = os.path.join(args.eval_data_path, 'val', f'{subject_name}_val.csv')
# dev_file_path = os.path.join(args.eval_data_path, 'dev', f'{subject_name}_dev.csv')
test_file_path = os.path.join(args.eval_data_path, 'test', f'{subject_name}_test.csv')
# val_df = pd.read_csv(val_file_path, names=['question','A','B','C','D','answer'])
# dev_df = pd.read_csv(dev_file_path, names=['question','A','B','C','D','answer'])
test_df = pd.read_csv(test_file_path, names=['question','A','B','C','D','answer'])
score = eval_subject(model, tokenizer, subject_name, test_df, save_result_dir=f"outs_chat/mmlu_eval_result", overwrite=args.overwrite)
dev_result[subject_name] = score
cal_mmlu(dev_result)
TASK_NAME_MAPPING = {'stem': ['abstract_algebra', 'anatomy', 'astronomy', 'college_biology', 'college_chemistry', 'college_computer_science', 'college_mathematics', 'college_physics', 'computer_security', 'conceptual_physics', 'electrical_engineering', 'elementary_mathematics', 'high_school_biology', 'high_school_chemistry', 'high_school_computer_science', 'high_school_mathematics', 'high_school_physics', 'high_school_statistics', 'machine_learning'],
'Humanities': ['formal_logic', 'high_school_european_history', 'high_school_us_history', 'high_school_world_history', 'international_law', 'jurisprudence', 'logical_fallacies', 'moral_disputes', 'moral_scenarios', 'philosophy', 'prehistory', 'professional_law', 'world_religions'],
'other': ['business_ethics', 'college_medicine', 'human_aging', 'management', 'marketing', 'medical_genetics', 'miscellaneous', 'nutrition', 'professional_accounting', 'professional_medicine', 'virology', 'global_facts', 'clinical_knowledge'],
'social': ['econometrics', 'high_school_geography', 'high_school_government_and_politics', 'high_school_macroeconomics', 'high_school_microeconomics', 'high_school_psychology', 'human_sexuality', 'professional_psychology', 'public_relations', 'security_studies', 'sociology', 'us_foreign_policy']}
SUBJECTS = [v for vl in TASK_NAME_MAPPING.values() for v in vl]
choices = ["A", "B", "C", "D"]
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Test HF checkpoint.')
parser.add_argument('-c', '--checkpoint-path', type=str, help='Checkpoint path', default="Qwen/Qwen-7B-Chat")
parser.add_argument('-s', '--seed', type=int, default=1234, help='Random seed')
"""Provide extra arguments required for tasks."""
group = parser.add_argument_group(title='Evaluation options')
group.add_argument('-d', '--eval_data_path', type=str,
help='Path to eval data')
group.add_argument("--debug", action='store_true', default=False,
help='Print infos.')
group.add_argument("--overwrite", action='store_true', default=False,
help='Overwrite existed results')
args = parser.parse_args()
set_seed(args.seed)
main(args)