--- license: apache-2.0 datasets: - voxreality/navigation_intructions_v2 language: - en base_model: - mistralai/Mistral-7B-Instruct-v0.2 --- **Model Description** **llama2-navigation** is a Larage Language Model (LLM) that is a fine-tuned version of **mistralai/Mistral-7B-Instruct-v0.2**. This model aims to provide navigation instructions given knowledge. The model was fine-tuned with Lora and custom training data(voxreality/navigation_intructions_v2). For more details about the model's use case, you can find the code at the following link: - **Repository**: [https://gitlab.com/horizon-europe-voxreality/dialogue-system/conference_agent](https://gitlab.com/horizon-europe-voxreality/dialogue-system/conference_agent) **How to Get Started with the Model** Below you can find an example of model usage: ```python import torch, textwrap from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig, pipeline from langchain import HuggingFacePipeline, PromptTemplate from langchain.chains import LLMChain model_name = "voxreality/mistral-7B-navigation-new-instructions" user_msg = "I need to go to the social area." knowledge = "start, turn left, crossing yellow sphere left, arrive wall opening, turn left, turn right, pass corridor, crossing magenta sphere left, arrive conference room, finish" tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True) model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, trust_remote_code=True, device_map="auto") generation_config = GenerationConfig.from_pretrained(model_name) generation_config.max_new_tokens = 1024 generation_config.temperature = 0.0001 generation_config.top_p = 0.95 generation_config.do_sample = True generation_config.repetition_penalty = 1.15 text_pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer, generation_config=generation_config) llm = HuggingFacePipeline(pipeline=text_pipeline, model_kwargs={"temperature": 0}) text_pipeline = pipeline( "text-generation", model=model, tokenizer=tokenizer, generation_config=generation_config) model = HuggingFacePipeline(pipeline=text_pipeline, model_kwargs={"temperature": 0}) prompt = textwrap.dedent(""" [INST] <> You are a navigation assistant at a conference venue. Your task is to guide users to specific locations within the venue, including "booth 1", "booth 2", "booth 3", "booth 4", "social area", "exit", "business room", and "conference room". - For clear directions, respond with numbered steps using the details provided in the 'knowledge' field. - Ensure to translate the directions from the 'knowledge' field into a user-friendly format with clear, numbered steps." "" \n\n <> ### input: {input} ### knowledge: {knowledge} [/INST] """) prompt = PromptTemplate(input_variables=["input", "knowledge"], template= prompt) chain = LLMChain(llm=model, prompt=prompt) print(chain.run(input=user_msg, knowledge=knowledge)) ```