Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
- de
|
5 |
+
- it
|
6 |
+
- el
|
7 |
+
- es
|
8 |
+
- nl
|
9 |
+
pipeline_tag: translation
|
10 |
+
---
|
11 |
+
The model and the tokenizer are based on [facebook/nllb-200-distilled-600M](https://huggingface.co/facebook/nllb-200-distilled-600M).
|
12 |
+
|
13 |
+
We trained the model to use one sentence of context and a single term of the terminology-constraint. The context is prepended to the input sentence with the `sep_token` in between. The term should be in the target language and be postpended to the input sentence with the `sep_token` in between. In case of no terminology constraint, the `sep_token` should also be added. We used a subset of the [OpenSubtitles2018]( https://huggingface.co/datasets/open_subtitles) dataset for training. We trained on the interleaved dataset for all directions between the following languages: English, German, Dutch, Spanish, Italian, and Greek.
|
14 |
+
|
15 |
+
The tokenizer of the base model was not changed. For the language codes, see the base model.
|
16 |
+
|
17 |
+
Use this code for translation:
|
18 |
+
```
|
19 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
20 |
+
|
21 |
+
model_name = 'voxreality/src_ctx_and_term_nllb_600M'
|
22 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
23 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
24 |
+
|
25 |
+
max_length = 100
|
26 |
+
src_lang = 'eng_Latn'
|
27 |
+
tgt_lang = 'deu_Latn'
|
28 |
+
context_text = 'This is an optional context sentence.'
|
29 |
+
target_term = 'text' # term to be used in the target language
|
30 |
+
sentence_text = 'Text to be translated.'
|
31 |
+
|
32 |
+
# if a context and a term are provided use the following:
|
33 |
+
input_text = f'{context_text} {tokenizer.sep_token} {sentence_text} {tokenizer.sep_token} {target_term}'
|
34 |
+
# if no context but a term is provided use the following:
|
35 |
+
# input_text = f'{sentence_text} {tokenizer.sep_token} {target_term}'
|
36 |
+
# if a context is provided but no term use the following:
|
37 |
+
# input_text = f'{context_text} {tokenizer.sep_token} {sentence_text} {tokenizer.sep_token}'
|
38 |
+
# if not context nor term is provided use the following:
|
39 |
+
# input_text = f'{sentence_text} {tokenizer.sep_token}'
|
40 |
+
|
41 |
+
tokenizer.src_lang = src_lang
|
42 |
+
inputs = tokenizer(input_text, return_tensors='pt').to(model.device)
|
43 |
+
model_output = model.generate(**inputs,
|
44 |
+
forced_bos_token_id=tokenizer.lang_code_to_id[tgt_lang],
|
45 |
+
max_length=max_length)
|
46 |
+
output_text = tokenizer.batch_decode(model_output, skip_special_tokens=True)[0]
|
47 |
+
|
48 |
+
print(output_text)
|
49 |
+
```
|
50 |
+
|
51 |
+
You can also use the pipeline
|
52 |
+
```
|
53 |
+
from transformers import pipeline
|
54 |
+
|
55 |
+
model_name = 'voxreality/src_ctx_and_term_nllb_600M'
|
56 |
+
translation_pipeline = pipeline("translation", model=model_name)
|
57 |
+
sep_token = translation_pipeline.tokenizer.sep_token
|
58 |
+
src_lang = 'eng_Latn'
|
59 |
+
tgt_lang = 'deu_Latn'
|
60 |
+
context_text = 'This is an optional context sentence.'
|
61 |
+
target_term = 'text' # term to be used in the target language
|
62 |
+
sentence_text = 'Text to be translated.'
|
63 |
+
|
64 |
+
|
65 |
+
# if a context and a term are provided use the following:
|
66 |
+
input_texts = [f'{context_text} {sep_token} {sentence_text} {sep_token} {target_term}']
|
67 |
+
# if no context but a term is provided use the following:
|
68 |
+
# input_texts = [f'{sentence_text} {sep_token} {target_term}']
|
69 |
+
# if a context is provided but no term use the following:
|
70 |
+
# input_texts = [f'{context_text} {sep_token} {sentence_text} {sep_token}']
|
71 |
+
# if not context nor term is provided use the following:
|
72 |
+
# input_texts = [f'{sentence_text} {sep_token}']
|
73 |
+
|
74 |
+
pipeline_output = translation_pipeline(input_texts, src_lang=src_lang, tgt_lang=tgt_lang)
|
75 |
+
|
76 |
+
print(pipeline_output[0]['translation_text'])
|
77 |
+
|
78 |
+
```
|