initial commit
Browse files- README.md +37 -0
- config.json +1 -0
- results.json +1 -0
- v_arcobot_A01.zip +3 -0
- v_arcobot_A01/_stable_baselines3_version +1 -0
- v_arcobot_A01/data +96 -0
- v_arcobot_A01/policy.optimizer.pth +3 -0
- v_arcobot_A01/policy.pth +3 -0
- v_arcobot_A01/pytorch_variables.pth +3 -0
- v_arcobot_A01/system_info.txt +9 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- Acrobot-v1
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: Acrobot-v1
|
16 |
+
type: Acrobot-v1
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -78.00 +/- 8.97
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **Acrobot-v1**
|
25 |
+
This is a trained model of a **PPO** agent playing **Acrobot-v1**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x000001BEB8DB1DA0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x000001BEB8DB1E40>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x000001BEB8DB1EE0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x000001BEB8DB1F80>", "_build": "<function ActorCriticPolicy._build at 0x000001BEB8DB2020>", "forward": "<function ActorCriticPolicy.forward at 0x000001BEB8DB20C0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x000001BEB8DB2160>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x000001BEB8DB2200>", "_predict": "<function ActorCriticPolicy._predict at 0x000001BEB8DB22A0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x000001BEB8DB2340>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x000001BEB8DB23E0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x000001BEB8DB2480>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x000001BEB8DAA600>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1003328, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1689028829172559300, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": null, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0033279999999999976, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwFBAAAAAAACMAWyUS0KMAXSUR0C0dXSDVYp2dX2UKGgGR8BTwAAAAAAAaAdLUGgIR0C0dZkrXlKcdX2UKGgGR8BTQAAAAAAAaAdLTmgIR0C0dahB3RoidX2UKGgGR8BPgAAAAAAAaAdLQGgIR0C0da6cZtN0dX2UKGgGR8BTgAAAAAAAaAdLT2gIR0C0dbeg13t8dX2UKGgGR8BVQAAAAAAAaAdLVmgIR0C0dcGelKsddX2UKGgGR8BSQAAAAAAAaAdLSmgIR0C0deQVfu1GdX2UKGgGR8BVwAAAAAAAaAdLWGgIR0C0degMlTm5dX2UKGgGR8BUwAAAAAAAaAdLVGgIR0C0dfTaXa8IdX2UKGgGR8BZAAAAAAAAaAdLZWgIR0C0dfTcynDSdX2UKGgGR8BSQAAAAAAAaAdLSmgIR0C0dfptJnQIdX2UKGgGR8BWgAAAAAAAaAdLW2gIR0C0df1M/QjVdX2UKGgGR8BTQAAAAAAAaAdLTmgIR0C0dgkBwMpgdX2UKGgGR8BTQAAAAAAAaAdLTmgIR0C0dgpZ8rqddX2UKGgGR8BPgAAAAAAAaAdLQGgIR0C0dj75hz/7dX2UKGgGR8BWwAAAAAAAaAdLXGgIR0C0dkYuK4x2dX2UKGgGR8BSAAAAAAAAaAdLSWgIR0C0dkVsP8Q7dX2UKGgGR8BQQAAAAAAAaAdLQmgIR0C0dkkzXSSedX2UKGgGR8BSQAAAAAAAaAdLSmgIR0C0dmsO9WZJdX2UKGgGR8BZwAAAAAAAaAdLaGgIR0C0dmwRTS9edX2UKGgGR8BUAAAAAAAAaAdLUWgIR0C0dnDuv2XcdX2UKGgGR8BcQAAAAAAAaAdLcmgIR0C0doB8D0UXdX2UKGgGR8BSAAAAAAAAaAdLSWgIR0C0dorJnxrjdX2UKGgGR8BUAAAAAAAAaAdLUWgIR0C0dphbr1M/dX2UKGgGR8BSAAAAAAAAaAdLSWgIR0C0dpeTq0MPdX2UKGgGR8BTQAAAAAAAaAdLTmgIR0C0dqHUpd8idX2UKGgGR8BTQAAAAAAAaAdLTmgIR0C0dqfomoitdX2UKGgGR8BTwAAAAAAAaAdLUGgIR0C0dq8g+yJLdX2UKGgGR8BWAAAAAAAAaAdLWWgIR0C0dtGQjlgddX2UKGgGR8BSgAAAAAAAaAdLS2gIR0C0duUUj9n9dX2UKGgGR8BZwAAAAAAAaAdLaGgIR0C0dvOqebuudX2UKGgGR8BTQAAAAAAAaAdLTmgIR0C0dvMqFyq/dX2UKGgGR8BTQAAAAAAAaAdLTmgIR0C0dvavq1PWdX2UKGgGR8BUwAAAAAAAaAdLVGgIR0C0dv/0VafSdX2UKGgGR8BTQAAAAAAAaAdLTmgIR0C0dx07W/ahdX2UKGgGR8BSAAAAAAAAaAdLSWgIR0C0dylD0DlpdX2UKGgGR8BXAAAAAAAAaAdLXWgIR0C0dzffO2RadX2UKGgGR8BSAAAAAAAAaAdLSWgIR0C0dzcXJo0zdX2UKGgGR8BSQAAAAAAAaAdLSmgIR0C0dzos/Y8MdX2UKGgGR8BXQAAAAAAAaAdLXmgIR0C0dzqsQumKdX2UKGgGR8BQAAAAAAAAaAdLQWgIR0C0dzz6ab4KdX2UKGgGR8BTwAAAAAAAaAdLUGgIR0C0d1Kt5le4dX2UKGgGR8BTgAAAAAAAaAdLT2gIR0C0d1Z08vEkdX2UKGgGR8BZAAAAAAAAaAdLZWgIR0C0d1+o99tudX2UKGgGR8BSQAAAAAAAaAdLSmgIR0C0d3XrpqyodX2UKGgGR8BQQAAAAAAAaAdLQmgIR0C0d4P07KaHdX2UKGgGR8BSAAAAAAAAaAdLSWgIR0C0d4bBwdbQdX2UKGgGR8BSAAAAAAAAaAdLSWgIR0C0d6CfHxSYdX2UKGgGR8BUgAAAAAAAaAdLU2gIR0C0d6wW8AaOdX2UKGgGR8BSAAAAAAAAaAdLSWgIR0C0d79XYDkmdX2UKGgGR8BTQAAAAAAAaAdLTmgIR0C0d9eHrQgLdX2UKGgGR8BSAAAAAAAAaAdLSWgIR0C0d9rfgrH3dX2UKGgGR8BSQAAAAAAAaAdLSmgIR0C0d974BV+7dX2UKGgGR8BTQAAAAAAAaAdLTmgIR0C0d+iup0fYdX2UKGgGR8BUQAAAAAAAaAdLUmgIR0C0d+1KkEcLdX2UKGgGR8BSwAAAAAAAaAdLTGgIR0C0d/5kK/mDdX2UKGgGR8BVgAAAAAAAaAdLV2gIR0C0d/93r2QGdX2UKGgGR8BewAAAAAAAaAdLfGgIR0C0eAQTRIBjdX2UKGgGR8BXQAAAAAAAaAdLXmgIR0C0eCPd/J/5dX2UKGgGR8BWgAAAAAAAaAdLW2gIR0C0eCmuLaVVdX2UKGgGR8BSAAAAAAAAaAdLSWgIR0C0eCj41xbTdX2UKGgGR8BQAAAAAAAAaAdLQWgIR0C0eDzkp7TldX2UKGgGR8BYAAAAAAAAaAdLYWgIR0C0eEpjMFEBdX2UKGgGR8BWQAAAAAAAaAdLWmgIR0C0eGmt6ol2dX2UKGgGR8BQAAAAAAAAaAdLQWgIR0C0eG2JJoTPdX2UKGgGR8BUAAAAAAAAaAdLUWgIR0C0eJKI7/4qdX2UKGgGR8BYwAAAAAAAaAdLZGgIR0C0eKm9tdiVdX2UKGgGR8BVgAAAAAAAaAdLV2gIR0C0eKxQizLPdX2UKGgGR8BRgAAAAAAAaAdLR2gIR0C0eK2Ur08OdX2UKGgGR8BUgAAAAAAAaAdLU2gIR0C0eLIx1xKhdX2UKGgGR8BVAAAAAAAAaAdLVWgIR0C0eLGucMEzdX2UKGgGR8BgYAAAAAAAaAdLhGgIR0C0eLO9OARTdX2UKGgGR8BUAAAAAAAAaAdLUWgIR0C0eL33Hq/udX2UKGgGR8BQQAAAAAAAaAdLQmgIR0C0eL/EXLvDdX2UKGgGR8BWwAAAAAAAaAdLXGgIR0C0eNS6pYLcdX2UKGgGR8BSgAAAAAAAaAdLS2gIR0C0eNkS7GvPdX2UKGgGR8BSgAAAAAAAaAdLS2gIR0C0eNhdld1MdX2UKGgGR8BQQAAAAAAAaAdLQmgIR0C0eOUZm7J5dX2UKGgGR8BSAAAAAAAAaAdLSWgIR0C0eRDw2ETQdX2UKGgGR8BYQAAAAAAAaAdLYmgIR0C0eR3dweeWdX2UKGgGR8BQQAAAAAAAaAdLQmgIR0C0eTpoK2KEdX2UKGgGR8BQAAAAAAAAaAdLQWgIR0C0eTnhn8KpdX2UKGgGR8BSgAAAAAAAaAdLS2gIR0C0eTleWv8qdX2UKGgGR8BSAAAAAAAAaAdLSWgIR0C0eVDJQtSRdX2UKGgGR8BSQAAAAAAAaAdLSmgIR0C0eVTkZJkHdX2UKGgGR8BPgAAAAAAAaAdLQGgIR0C0eXKDXe3ydX2UKGgGR8BWAAAAAAAAaAdLWWgIR0C0eXMW0qpcdX2UKGgGR8BUwAAAAAAAaAdLVGgIR0C0eXcySFGodX2UKGgGR8BSQAAAAAAAaAdLSmgIR0C0eXqCL/CJdX2UKGgGR8BdwAAAAAAAaAdLeGgIR0C0eXyUX531dX2UKGgGR8BYAAAAAAAAaAdLYWgIR0C0eXxOUMXrdX2UKGgGR8BTQAAAAAAAaAdLTmgIR0C0eYMnRb8ndX2UKGgGR8BXAAAAAAAAaAdLXWgIR0C0eYjZpSJkdX2UKGgGR8BSAAAAAAAAaAdLSWgIR0C0ebVSjxkNdX2UKGgGR8BbAAAAAAAAaAdLbWgIR0C0ech4hUzbdX2UKGgGR8BUQAAAAAAAaAdLUmgIR0C0efvdIoVmdX2UKGgGR8BXwAAAAAAAaAdLYGgIR0C0ef+nAIppdX2UKGgGR8BSQAAAAAAAaAdLSmgIR0C0egWaH9FXdX2UKGgGR8BWQAAAAAAAaAdLWmgIR0C0ehDc2zfKdX2UKGgGR8BVgAAAAAAAaAdLV2gIR0C0eiEt7KJVdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 488, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVNAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBgAAAAAAAAABAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBoWUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgYAAAAAAAAAAQEBAQEBlGgVSwaFlGgZdJRSlIwGX3NoYXBllEsGhZSMA2xvd5RoESiWGAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/2w9JwdYx4sGUaAtLBoWUaBl0lFKUjARoaWdolGgRKJYYAAAAAAAAAAAAgD8AAIA/AACAPwAAgD/bD0lB1jHiQZRoC0sGhZRoGXSUUpSMCGxvd19yZXBylIxDWyAtMS4gICAgICAgIC0xLiAgICAgICAgLTEuICAgICAgICAtMS4gICAgICAgLTEyLjU2NjM3MSAtMjguMjc0MzM0XZSMCWhpZ2hfcmVwcpSMPVsgMS4gICAgICAgIDEuICAgICAgICAxLiAgICAgICAgMS4gICAgICAgMTIuNTY2MzcxIDI4LjI3NDMzNF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True]", "bounded_above": "[ True True True True True True]", "_shape": [6], "low": "[ -1. -1. -1. -1. -12.566371 -28.274334]", "high": "[ 1. 1. 1. 1. 12.566371 28.274334]", "low_repr": "[ -1. -1. -1. -1. -12.566371 -28.274334]", "high_repr": "[ 1. 1. 1. 1. 12.566371 28.274334]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV/QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIAwAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": "3", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1028, "gamma": 0.9993, "gae_lambda": 0.99, "ent_coef": 0.0033, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 32, "n_epochs": 8, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVkQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MIlQGXAIkBUwCUToWUKYwBX5SFlIxdQzpcVXNlcnNcdm95elwudmlydHVhbGVudnNcZGVlcF9ybF9jb3Vyc2VcTGliXHNpdGUtcGFja2FnZXNcc3RhYmxlX2Jhc2VsaW5lczNcY29tbW9uXHV0aWxzLnB5lIwEZnVuY5RLhEMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgNdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVkQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MIlQGXAIkBUwCUToWUKYwBX5SFlIxdQzpcVXNlcnNcdm95elwudmlydHVhbGVudnNcZGVlcF9ybF9jb3Vyc2VcTGliXHNpdGUtcGFja2FnZXNcc3RhYmxlX2Jhc2VsaW5lczNcY29tbW9uXHV0aWxzLnB5lIwEZnVuY5RLhEMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgNdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Windows-10-10.0.22621-SP0 10.0.22621", "Python": "3.11.3", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.25.1", "Cloudpickle": "1.6.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.19.0"}}
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -78.0, "std_reward": 8.966604708583958, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-10T23:36:02.654432"}
|
v_arcobot_A01.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:86a8459b40d2430fe505b599fb35a7916d1391a7bbcd2e01b9ec42fb303ee227
|
3 |
+
size 141713
|
v_arcobot_A01/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
v_arcobot_A01/data
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x000001BEB8DB1DA0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x000001BEB8DB1E40>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x000001BEB8DB1EE0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x000001BEB8DB1F80>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x000001BEB8DB2020>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x000001BEB8DB20C0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x000001BEB8DB2160>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x000001BEB8DB2200>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x000001BEB8DB22A0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x000001BEB8DB2340>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x000001BEB8DB23E0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x000001BEB8DB2480>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x000001BEB8DAA600>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1003328,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1689028829172559300,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": null,
|
33 |
+
"_last_episode_starts": {
|
34 |
+
":type:": "<class 'numpy.ndarray'>",
|
35 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
36 |
+
},
|
37 |
+
"_last_original_obs": null,
|
38 |
+
"_episode_num": 0,
|
39 |
+
"use_sde": false,
|
40 |
+
"sde_sample_freq": -1,
|
41 |
+
"_current_progress_remaining": -0.0033279999999999976,
|
42 |
+
"_stats_window_size": 100,
|
43 |
+
"ep_info_buffer": {
|
44 |
+
":type:": "<class 'collections.deque'>",
|
45 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwFBAAAAAAACMAWyUS0KMAXSUR0C0dXSDVYp2dX2UKGgGR8BTwAAAAAAAaAdLUGgIR0C0dZkrXlKcdX2UKGgGR8BTQAAAAAAAaAdLTmgIR0C0dahB3RoidX2UKGgGR8BPgAAAAAAAaAdLQGgIR0C0da6cZtN0dX2UKGgGR8BTgAAAAAAAaAdLT2gIR0C0dbeg13t8dX2UKGgGR8BVQAAAAAAAaAdLVmgIR0C0dcGelKsddX2UKGgGR8BSQAAAAAAAaAdLSmgIR0C0deQVfu1GdX2UKGgGR8BVwAAAAAAAaAdLWGgIR0C0degMlTm5dX2UKGgGR8BUwAAAAAAAaAdLVGgIR0C0dfTaXa8IdX2UKGgGR8BZAAAAAAAAaAdLZWgIR0C0dfTcynDSdX2UKGgGR8BSQAAAAAAAaAdLSmgIR0C0dfptJnQIdX2UKGgGR8BWgAAAAAAAaAdLW2gIR0C0df1M/QjVdX2UKGgGR8BTQAAAAAAAaAdLTmgIR0C0dgkBwMpgdX2UKGgGR8BTQAAAAAAAaAdLTmgIR0C0dgpZ8rqddX2UKGgGR8BPgAAAAAAAaAdLQGgIR0C0dj75hz/7dX2UKGgGR8BWwAAAAAAAaAdLXGgIR0C0dkYuK4x2dX2UKGgGR8BSAAAAAAAAaAdLSWgIR0C0dkVsP8Q7dX2UKGgGR8BQQAAAAAAAaAdLQmgIR0C0dkkzXSSedX2UKGgGR8BSQAAAAAAAaAdLSmgIR0C0dmsO9WZJdX2UKGgGR8BZwAAAAAAAaAdLaGgIR0C0dmwRTS9edX2UKGgGR8BUAAAAAAAAaAdLUWgIR0C0dnDuv2XcdX2UKGgGR8BcQAAAAAAAaAdLcmgIR0C0doB8D0UXdX2UKGgGR8BSAAAAAAAAaAdLSWgIR0C0dorJnxrjdX2UKGgGR8BUAAAAAAAAaAdLUWgIR0C0dphbr1M/dX2UKGgGR8BSAAAAAAAAaAdLSWgIR0C0dpeTq0MPdX2UKGgGR8BTQAAAAAAAaAdLTmgIR0C0dqHUpd8idX2UKGgGR8BTQAAAAAAAaAdLTmgIR0C0dqfomoitdX2UKGgGR8BTwAAAAAAAaAdLUGgIR0C0dq8g+yJLdX2UKGgGR8BWAAAAAAAAaAdLWWgIR0C0dtGQjlgddX2UKGgGR8BSgAAAAAAAaAdLS2gIR0C0duUUj9n9dX2UKGgGR8BZwAAAAAAAaAdLaGgIR0C0dvOqebuudX2UKGgGR8BTQAAAAAAAaAdLTmgIR0C0dvMqFyq/dX2UKGgGR8BTQAAAAAAAaAdLTmgIR0C0dvavq1PWdX2UKGgGR8BUwAAAAAAAaAdLVGgIR0C0dv/0VafSdX2UKGgGR8BTQAAAAAAAaAdLTmgIR0C0dx07W/ahdX2UKGgGR8BSAAAAAAAAaAdLSWgIR0C0dylD0DlpdX2UKGgGR8BXAAAAAAAAaAdLXWgIR0C0dzffO2RadX2UKGgGR8BSAAAAAAAAaAdLSWgIR0C0dzcXJo0zdX2UKGgGR8BSQAAAAAAAaAdLSmgIR0C0dzos/Y8MdX2UKGgGR8BXQAAAAAAAaAdLXmgIR0C0dzqsQumKdX2UKGgGR8BQAAAAAAAAaAdLQWgIR0C0dzz6ab4KdX2UKGgGR8BTwAAAAAAAaAdLUGgIR0C0d1Kt5le4dX2UKGgGR8BTgAAAAAAAaAdLT2gIR0C0d1Z08vEkdX2UKGgGR8BZAAAAAAAAaAdLZWgIR0C0d1+o99tudX2UKGgGR8BSQAAAAAAAaAdLSmgIR0C0d3XrpqyodX2UKGgGR8BQQAAAAAAAaAdLQmgIR0C0d4P07KaHdX2UKGgGR8BSAAAAAAAAaAdLSWgIR0C0d4bBwdbQdX2UKGgGR8BSAAAAAAAAaAdLSWgIR0C0d6CfHxSYdX2UKGgGR8BUgAAAAAAAaAdLU2gIR0C0d6wW8AaOdX2UKGgGR8BSAAAAAAAAaAdLSWgIR0C0d79XYDkmdX2UKGgGR8BTQAAAAAAAaAdLTmgIR0C0d9eHrQgLdX2UKGgGR8BSAAAAAAAAaAdLSWgIR0C0d9rfgrH3dX2UKGgGR8BSQAAAAAAAaAdLSmgIR0C0d974BV+7dX2UKGgGR8BTQAAAAAAAaAdLTmgIR0C0d+iup0fYdX2UKGgGR8BUQAAAAAAAaAdLUmgIR0C0d+1KkEcLdX2UKGgGR8BSwAAAAAAAaAdLTGgIR0C0d/5kK/mDdX2UKGgGR8BVgAAAAAAAaAdLV2gIR0C0d/93r2QGdX2UKGgGR8BewAAAAAAAaAdLfGgIR0C0eAQTRIBjdX2UKGgGR8BXQAAAAAAAaAdLXmgIR0C0eCPd/J/5dX2UKGgGR8BWgAAAAAAAaAdLW2gIR0C0eCmuLaVVdX2UKGgGR8BSAAAAAAAAaAdLSWgIR0C0eCj41xbTdX2UKGgGR8BQAAAAAAAAaAdLQWgIR0C0eDzkp7TldX2UKGgGR8BYAAAAAAAAaAdLYWgIR0C0eEpjMFEBdX2UKGgGR8BWQAAAAAAAaAdLWmgIR0C0eGmt6ol2dX2UKGgGR8BQAAAAAAAAaAdLQWgIR0C0eG2JJoTPdX2UKGgGR8BUAAAAAAAAaAdLUWgIR0C0eJKI7/4qdX2UKGgGR8BYwAAAAAAAaAdLZGgIR0C0eKm9tdiVdX2UKGgGR8BVgAAAAAAAaAdLV2gIR0C0eKxQizLPdX2UKGgGR8BRgAAAAAAAaAdLR2gIR0C0eK2Ur08OdX2UKGgGR8BUgAAAAAAAaAdLU2gIR0C0eLIx1xKhdX2UKGgGR8BVAAAAAAAAaAdLVWgIR0C0eLGucMEzdX2UKGgGR8BgYAAAAAAAaAdLhGgIR0C0eLO9OARTdX2UKGgGR8BUAAAAAAAAaAdLUWgIR0C0eL33Hq/udX2UKGgGR8BQQAAAAAAAaAdLQmgIR0C0eL/EXLvDdX2UKGgGR8BWwAAAAAAAaAdLXGgIR0C0eNS6pYLcdX2UKGgGR8BSgAAAAAAAaAdLS2gIR0C0eNkS7GvPdX2UKGgGR8BSgAAAAAAAaAdLS2gIR0C0eNhdld1MdX2UKGgGR8BQQAAAAAAAaAdLQmgIR0C0eOUZm7J5dX2UKGgGR8BSAAAAAAAAaAdLSWgIR0C0eRDw2ETQdX2UKGgGR8BYQAAAAAAAaAdLYmgIR0C0eR3dweeWdX2UKGgGR8BQQAAAAAAAaAdLQmgIR0C0eTpoK2KEdX2UKGgGR8BQAAAAAAAAaAdLQWgIR0C0eTnhn8KpdX2UKGgGR8BSgAAAAAAAaAdLS2gIR0C0eTleWv8qdX2UKGgGR8BSAAAAAAAAaAdLSWgIR0C0eVDJQtSRdX2UKGgGR8BSQAAAAAAAaAdLSmgIR0C0eVTkZJkHdX2UKGgGR8BPgAAAAAAAaAdLQGgIR0C0eXKDXe3ydX2UKGgGR8BWAAAAAAAAaAdLWWgIR0C0eXMW0qpcdX2UKGgGR8BUwAAAAAAAaAdLVGgIR0C0eXcySFGodX2UKGgGR8BSQAAAAAAAaAdLSmgIR0C0eXqCL/CJdX2UKGgGR8BdwAAAAAAAaAdLeGgIR0C0eXyUX531dX2UKGgGR8BYAAAAAAAAaAdLYWgIR0C0eXxOUMXrdX2UKGgGR8BTQAAAAAAAaAdLTmgIR0C0eYMnRb8ndX2UKGgGR8BXAAAAAAAAaAdLXWgIR0C0eYjZpSJkdX2UKGgGR8BSAAAAAAAAaAdLSWgIR0C0ebVSjxkNdX2UKGgGR8BbAAAAAAAAaAdLbWgIR0C0ech4hUzbdX2UKGgGR8BUQAAAAAAAaAdLUmgIR0C0efvdIoVmdX2UKGgGR8BXwAAAAAAAaAdLYGgIR0C0ef+nAIppdX2UKGgGR8BSQAAAAAAAaAdLSmgIR0C0egWaH9FXdX2UKGgGR8BWQAAAAAAAaAdLWmgIR0C0ehDc2zfKdX2UKGgGR8BVgAAAAAAAaAdLV2gIR0C0eiEt7KJVdWUu"
|
46 |
+
},
|
47 |
+
"ep_success_buffer": {
|
48 |
+
":type:": "<class 'collections.deque'>",
|
49 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
50 |
+
},
|
51 |
+
"_n_updates": 488,
|
52 |
+
"observation_space": {
|
53 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
54 |
+
":serialized:": "gAWVNAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBgAAAAAAAAABAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBoWUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgYAAAAAAAAAAQEBAQEBlGgVSwaFlGgZdJRSlIwGX3NoYXBllEsGhZSMA2xvd5RoESiWGAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/2w9JwdYx4sGUaAtLBoWUaBl0lFKUjARoaWdolGgRKJYYAAAAAAAAAAAAgD8AAIA/AACAPwAAgD/bD0lB1jHiQZRoC0sGhZRoGXSUUpSMCGxvd19yZXBylIxDWyAtMS4gICAgICAgIC0xLiAgICAgICAgLTEuICAgICAgICAtMS4gICAgICAgLTEyLjU2NjM3MSAtMjguMjc0MzM0XZSMCWhpZ2hfcmVwcpSMPVsgMS4gICAgICAgIDEuICAgICAgICAxLiAgICAgICAgMS4gICAgICAgMTIuNTY2MzcxIDI4LjI3NDMzNF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
55 |
+
"dtype": "float32",
|
56 |
+
"bounded_below": "[ True True True True True True]",
|
57 |
+
"bounded_above": "[ True True True True True True]",
|
58 |
+
"_shape": [
|
59 |
+
6
|
60 |
+
],
|
61 |
+
"low": "[ -1. -1. -1. -1. -12.566371 -28.274334]",
|
62 |
+
"high": "[ 1. 1. 1. 1. 12.566371 28.274334]",
|
63 |
+
"low_repr": "[ -1. -1. -1. -1. -12.566371 -28.274334]",
|
64 |
+
"high_repr": "[ 1. 1. 1. 1. 12.566371 28.274334]",
|
65 |
+
"_np_random": null
|
66 |
+
},
|
67 |
+
"action_space": {
|
68 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
69 |
+
":serialized:": "gAWV/QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIAwAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
70 |
+
"n": "3",
|
71 |
+
"start": "0",
|
72 |
+
"_shape": [],
|
73 |
+
"dtype": "int64",
|
74 |
+
"_np_random": null
|
75 |
+
},
|
76 |
+
"n_envs": 16,
|
77 |
+
"n_steps": 1028,
|
78 |
+
"gamma": 0.9993,
|
79 |
+
"gae_lambda": 0.99,
|
80 |
+
"ent_coef": 0.0033,
|
81 |
+
"vf_coef": 0.5,
|
82 |
+
"max_grad_norm": 0.5,
|
83 |
+
"batch_size": 32,
|
84 |
+
"n_epochs": 8,
|
85 |
+
"clip_range": {
|
86 |
+
":type:": "<class 'function'>",
|
87 |
+
":serialized:": "gAWVkQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MIlQGXAIkBUwCUToWUKYwBX5SFlIxdQzpcVXNlcnNcdm95elwudmlydHVhbGVudnNcZGVlcF9ybF9jb3Vyc2VcTGliXHNpdGUtcGFja2FnZXNcc3RhYmxlX2Jhc2VsaW5lczNcY29tbW9uXHV0aWxzLnB5lIwEZnVuY5RLhEMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgNdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
88 |
+
},
|
89 |
+
"clip_range_vf": null,
|
90 |
+
"normalize_advantage": true,
|
91 |
+
"target_kl": null,
|
92 |
+
"lr_schedule": {
|
93 |
+
":type:": "<class 'function'>",
|
94 |
+
":serialized:": "gAWVkQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MIlQGXAIkBUwCUToWUKYwBX5SFlIxdQzpcVXNlcnNcdm95elwudmlydHVhbGVudnNcZGVlcF9ybF9jb3Vyc2VcTGliXHNpdGUtcGFja2FnZXNcc3RhYmxlX2Jhc2VsaW5lczNcY29tbW9uXHV0aWxzLnB5lIwEZnVuY5RLhEMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgNdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
95 |
+
}
|
96 |
+
}
|
v_arcobot_A01/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3f2d89ce09340138e45ce4adbb4e70759f277e8dfea3a5a368b3a13e1d4810ab
|
3 |
+
size 85497
|
v_arcobot_A01/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:771b5f52db3374a02d93011dbfed5480d84af2ad8707a585e43969a467526d0f
|
3 |
+
size 42049
|
v_arcobot_A01/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
v_arcobot_A01/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Windows-10-10.0.22621-SP0 10.0.22621
|
2 |
+
- Python: 3.11.3
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.25.1
|
7 |
+
- Cloudpickle: 1.6.0
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.19.0
|