Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-nc-4.0
|
3 |
+
datasets:
|
4 |
+
- vumichien/meals-data-gliner
|
5 |
+
language:
|
6 |
+
- en
|
7 |
+
library_name: gliner
|
8 |
+
---
|
9 |
+
# vumichien/ner-jp-gliner
|
10 |
+
|
11 |
+
This model is a fine-tuned version of [deberta-v3-base-small](microsoft/deberta-v3-small) on the meals synthetic dataset that generated by Mistral 8B.
|
12 |
+
It achieves the following results:
|
13 |
+
- Precision: 84.79%
|
14 |
+
- Recall: 75.04%
|
15 |
+
- F1 score: 79.62%
|
16 |
+
|
17 |
+
## Model description
|
18 |
+
|
19 |
+
More information needed
|
20 |
+
|
21 |
+
## Intended uses & limitations
|
22 |
+
|
23 |
+
More information needed
|
24 |
+
|
25 |
+
## Training and evaluation data
|
26 |
+
|
27 |
+
More information needed
|
28 |
+
|
29 |
+
## Training procedure
|
30 |
+
|
31 |
+
### Training hyperparameters
|
32 |
+
The following hyperparameters were used during training:
|
33 |
+
- num_steps: 30000
|
34 |
+
- train_batch_size: 8
|
35 |
+
- eval_every: 3000
|
36 |
+
- warmup_ratio: 0.1
|
37 |
+
- scheduler_type: "cosine"
|
38 |
+
- loss_alpha: -1
|
39 |
+
- loss_gamma: 0
|
40 |
+
- label_smoothing: 0
|
41 |
+
- loss_reduction: "sum"
|
42 |
+
- lr_encoder: 1e-5
|
43 |
+
- lr_others: 5e-5
|
44 |
+
- weight_decay_encoder: 0.01
|
45 |
+
- weight_decay_other: 0.01
|
46 |
+
|
47 |
+
### Training results
|
48 |
+
|
49 |
+
| Epoch | Training Loss |
|
50 |
+
|:-----:|:-------------:|
|
51 |
+
| 1 | No log |
|
52 |
+
| 2 | No log |
|
53 |
+
| 3 | 75.730700 |
|
54 |
+
| 4 | 75.730700 |
|
55 |
+
| 5 | 75.730700 |
|
56 |
+
| 6 | 61.001500 |
|
57 |
+
| 7 | 61.001500 |
|
58 |
+
| 8 | 54.493900 |
|
59 |
+
| 9 | 54.493900 |
|
60 |
+
| 10 | 54.493900 |
|
61 |
+
| 11 | 48.829000 |
|
62 |
+
| 12 | 48.829000 |
|
63 |
+
| 13 | 44.892000 |
|
64 |
+
| 14 | 44.892000 |
|
65 |
+
| 15 | 44.892000 |
|
66 |
+
| 16 | 41.297600 |
|
67 |
+
| 17 | 41.297600 |
|
68 |
+
| 18 | 41.297600 |
|
69 |
+
| 19 | 37.768500 |
|
70 |
+
| 20 | 37.768500 |
|
71 |
+
| 21 | 35.017400 |
|
72 |
+
| 22 | 35.017400 |
|
73 |
+
| 23 | 35.017400 |
|
74 |
+
| 24 | 32.340500 |
|
75 |
+
| 25 | 32.340500 |
|
76 |
+
| 26 | 29.995400 |
|
77 |
+
| 27 | 29.995400 |
|
78 |
+
| 28 | 29.995400 |
|
79 |
+
| 29 | 28.467700 |
|
80 |
+
| 30 | 28.467700 |
|
81 |
+
| 31 | 28.467700 |
|
82 |
+
| 32 | 26.469200 |
|
83 |
+
| 33 | 26.469200 |
|
84 |
+
| 34 | 25.156200 |
|
85 |
+
| 35 | 25.156200 |
|
86 |
+
| 36 | 25.156200 |
|
87 |
+
| 37 | 24.252900 |
|
88 |
+
| 38 | 24.252900 |
|
89 |
+
| 39 | 23.941300 |
|
90 |
+
| 40 | 23.941300 |
|
91 |
+
| 41 | 23.941300 |
|
92 |
+
| 42 | 22.776800 |
|
93 |
+
| 43 | 22.776800 |
|
94 |
+
| 44 | 22.776800 |
|
95 |
+
| 45 | 23.013400 |
|
96 |
+
| 46 | 23.013400 |
|
97 |
+
| 47 | 22.030100 |
|
98 |
+
| 48 | 22.030100 |
|
99 |
+
| 49 | 22.030100 |
|
100 |
+
| 50 | 21.937700 |
|
101 |
+
| 51 | 21.948900 |
|