GLiNER
PyTorch
English
vumichien commited on
Commit
14665cd
·
verified ·
1 Parent(s): bef8aa3

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +101 -0
README.md ADDED
@@ -0,0 +1,101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-nc-4.0
3
+ datasets:
4
+ - vumichien/meals-data-gliner
5
+ language:
6
+ - en
7
+ library_name: gliner
8
+ ---
9
+ # vumichien/ner-jp-gliner
10
+
11
+ This model is a fine-tuned version of [deberta-v3-base-small](microsoft/deberta-v3-small) on the meals synthetic dataset that generated by Mistral 8B.
12
+ It achieves the following results:
13
+ - Precision: 84.79%
14
+ - Recall: 75.04%
15
+ - F1 score: 79.62%
16
+
17
+ ## Model description
18
+
19
+ More information needed
20
+
21
+ ## Intended uses & limitations
22
+
23
+ More information needed
24
+
25
+ ## Training and evaluation data
26
+
27
+ More information needed
28
+
29
+ ## Training procedure
30
+
31
+ ### Training hyperparameters
32
+ The following hyperparameters were used during training:
33
+ - num_steps: 30000
34
+ - train_batch_size: 8
35
+ - eval_every: 3000
36
+ - warmup_ratio: 0.1
37
+ - scheduler_type: "cosine"
38
+ - loss_alpha: -1
39
+ - loss_gamma: 0
40
+ - label_smoothing: 0
41
+ - loss_reduction: "sum"
42
+ - lr_encoder: 1e-5
43
+ - lr_others: 5e-5
44
+ - weight_decay_encoder: 0.01
45
+ - weight_decay_other: 0.01
46
+
47
+ ### Training results
48
+
49
+ | Epoch | Training Loss |
50
+ |:-----:|:-------------:|
51
+ | 1 | No log |
52
+ | 2 | No log |
53
+ | 3 | 75.730700 |
54
+ | 4 | 75.730700 |
55
+ | 5 | 75.730700 |
56
+ | 6 | 61.001500 |
57
+ | 7 | 61.001500 |
58
+ | 8 | 54.493900 |
59
+ | 9 | 54.493900 |
60
+ | 10 | 54.493900 |
61
+ | 11 | 48.829000 |
62
+ | 12 | 48.829000 |
63
+ | 13 | 44.892000 |
64
+ | 14 | 44.892000 |
65
+ | 15 | 44.892000 |
66
+ | 16 | 41.297600 |
67
+ | 17 | 41.297600 |
68
+ | 18 | 41.297600 |
69
+ | 19 | 37.768500 |
70
+ | 20 | 37.768500 |
71
+ | 21 | 35.017400 |
72
+ | 22 | 35.017400 |
73
+ | 23 | 35.017400 |
74
+ | 24 | 32.340500 |
75
+ | 25 | 32.340500 |
76
+ | 26 | 29.995400 |
77
+ | 27 | 29.995400 |
78
+ | 28 | 29.995400 |
79
+ | 29 | 28.467700 |
80
+ | 30 | 28.467700 |
81
+ | 31 | 28.467700 |
82
+ | 32 | 26.469200 |
83
+ | 33 | 26.469200 |
84
+ | 34 | 25.156200 |
85
+ | 35 | 25.156200 |
86
+ | 36 | 25.156200 |
87
+ | 37 | 24.252900 |
88
+ | 38 | 24.252900 |
89
+ | 39 | 23.941300 |
90
+ | 40 | 23.941300 |
91
+ | 41 | 23.941300 |
92
+ | 42 | 22.776800 |
93
+ | 43 | 22.776800 |
94
+ | 44 | 22.776800 |
95
+ | 45 | 23.013400 |
96
+ | 46 | 23.013400 |
97
+ | 47 | 22.030100 |
98
+ | 48 | 22.030100 |
99
+ | 49 | 22.030100 |
100
+ | 50 | 21.937700 |
101
+ | 51 | 21.948900 |