File size: 13,717 Bytes
ff79ac3
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7d2a7f632cb0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d2a7f632d40>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d2a7f632dd0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d2a7f632e60>", "_build": "<function ActorCriticPolicy._build at 0x7d2a7f632ef0>", "forward": "<function ActorCriticPolicy.forward at 0x7d2a7f632f80>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7d2a7f633010>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d2a7f6330a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7d2a7f633130>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d2a7f6331c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d2a7f633250>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7d2a7f6332e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7d2a7f6262c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1729571729814284782, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGZuHjyFK6I404iQO4WdRzga/qS73MQNuQAAgD8AAIA/zZvSPMO1f7gRy8Y7p4f9N8AaS7qmaHc2AACAPwAAgD+NN6c+xZTjPmCrFb62SIK+kvbZPSDRCL0AAAAAAAAAACY/sz32jEC6qNBlO0culja8Jzu6296TNQAAgD8AAAAAjWriPcOJfrroyLE6/DauNYOlPDtKus+5AACAPwAAgD8A9cO84XSIum7njDsPkZI4tcpUOVhd07kAAIA/AACAP2ZWtTv2IE+6jsIrOc9Mj7acw+q6Fw5HuAAAgD8AAIA/mpoNPa7vsjm4rKO5R2YkNkfXibmJGsc4AACAPwAAgD8A0Ic6jwYuur2arzrNa6O02cfpubqIzLkAAIA/AACAPxqIKD0URo66pfi8OgCNwjTnTQm7YvDYuQAAgD8AAIA/sxEIPSmgHLpJ2aG6R6gMtrFgkDq/cL45AACAPwAAgD8AX9A9FNKYuq3Xy7p8iLW1EGwJu6Wg6zkAAIA/AACAP2ZjkbxS2NG5tpwAuvsjObU1Nw27mWIXOQAAgD8AAIA/moyCvLimzLkCTW66nJ1XtaNX4jqE6og5AACAPwAAgD8z+LW9EudWPsQtyT1FbCC+708LPUK3Y7wAAAAAAAAAAM0kwj7ejfw95jWuvuRdPr6S1Js9lVR1PgAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQF8vuTzND+mMAWyUTegDjAF0lEdAkLdKC+UQkHV9lChoBkdAZFsBH09QoGgHTegDaAhHQJDB6lMyrPt1fZQoaAZHQF6KTXrdFfBoB03oA2gIR0CQw67Gecx1dX2UKGgGR0BkjD0g8r7PaAdN6ANoCEdAkMZMZ9/jKnV9lChoBkdAZHsaXrt3OmgHTegDaAhHQJDGzqVyFPB1fZQoaAZHQGYwm6XjU/hoB03oA2gIR0CQx4FVDKHPdX2UKGgGR0BcNcRUWEbpaAdN6ANoCEdAkMlGEoOQQ3V9lChoBkdAYL1SR8twrGgHTegDaAhHQJDN2OmzjWF1fZQoaAZHQGL85HEuQIVoB03oA2gIR0CQ0X3Zf2K3dX2UKGgGR0BIp70voNd7aAdL62gIR0CQ0itvXK8tdX2UKGgGR0BmfzHwPRReaAdN6ANoCEdAkNJNAX2ugnV9lChoBkdAYdACjk+5fGgHTegDaAhHQJDUFJz1bq11fZQoaAZHQENnZnL7oB9oB0vuaAhHQJDd1lf7aZh1fZQoaAZHQF8HV81Gb1BoB03oA2gIR0CQ3wIw/PgOdX2UKGgGR0BhqlFz+3pfaAdN6ANoCEdAkN/Klk6LfnV9lChoBkdAZqYVkc0cfmgHTegDaAhHQJDhg0bcXWR1fZQoaAZHQEbO078vVVhoB0vYaAhHQJD8R8VpKz11fZQoaAZHQGAeMIE8q4JoB03oA2gIR0CQ/bYrrgO0dX2UKGgGR0Bm/sg+yJKraAdN6ANoCEdAkQI30se4kXV9lChoBkdAXQ5MIu5BkmgHTegDaAhHQJEDCBpYcNp1fZQoaAZHQE5ctjkMkQhoB0vLaAhHQJEJ38xbjcV1fZQoaAZHQGH8fNqxkd5oB03oA2gIR0CRDQznA6+4dX2UKGgGR0BC+yvs7dSEaAdL3GgIR0CRDzNzr/sFdX2UKGgGR0Bg8QC8vmHQaAdN6ANoCEdAkRCRYNiH7HV9lChoBkdAZZfXOnl4kmgHTegDaAhHQJEQ7jrAxi51fZQoaAZHQGRmHmig00poB03oA2gIR0CREWhf0EowdX2UKGgGR0BiT2CuloDgaAdN6ANoCEdAkRLCA+Y+jnV9lChoBkdAXyw8q4H5amgHTegDaAhHQJEWHX4CZF51fZQoaAZHQGFcJljEvTRoB03oA2gIR0CRGTdMCcPOdX2UKGgGR0BhfXAwfyPNaAdN6ANoCEdAkRn13EAHV3V9lChoBkdAS9Vc4YJmd2gHS/5oCEdAkRs+o1k1/HV9lChoBkdAYus1iONo8WgHTegDaAhHQJEb7A8B+4N1fZQoaAZHQGNeSHdoFmpoB03oA2gIR0CRJb4qgAZLdX2UKGgGR0BmS4XqJMxoaAdN6ANoCEdAkSel23azvHV9lChoBkdAYT3YEGJN02gHTegDaAhHQJEpXaVUuL91fZQoaAZHQGYN+1SflIVoB03oA2gIR0CRR07eVLSNdX2UKGgGR0BoEn1SOzY3aAdN6ANoCEdAkUsfxMFlkHV9lChoBkdAYXShCdBjWmgHTegDaAhHQJFRlIPK+zt1fZQoaAZHQGXNNp22XsxoB03oA2gIR0CRVKvt+kP+dX2UKGgGR0BkercfvF3qaAdN6ANoCEdAkVg5H/cWTHV9lChoBkdAZAHEE1VHWmgHTegDaAhHQJFYmxkd3jd1fZQoaAZHQGNGLApKBd5oB03oA2gIR0CRWSIf8uSPdX2UKGgGR0Bh7HJV81GcaAdN6ANoCEdAkVqKLn9vTHV9lChoBkdAXrbMW43FUGgHTegDaAhHQJFeEqiGnGd1fZQoaAZHQGMCD4YaYNRoB03oA2gIR0CRYZR+z+m4dX2UKGgGR0BgqgNb1RLsaAdN6ANoCEdAkWKRywOe8XV9lChoBkdAZaOIC2c8T2gHTegDaAhHQJFkaGCZnct1fZQoaAZHQGbTwT/Q0GhoB03oA2gIR0CRZVQHzH0cdX2UKGgGR0Be9TgydnTRaAdN6ANoCEdAkXIaiO/+KnV9lChoBkdAZhJ+w1R+B2gHTegDaAhHQJF0R1gYxcp1fZQoaAZHQGIXnctXgcdoB03oA2gIR0CRdlHYpUgkdX2UKGgGR0BdugWac7QtaAdN6ANoCEdAkZMZX2dupHV9lChoBkdAZz3+qioKlmgHTegDaAhHQJGYkOy3TeB1fZQoaAZHQGNio5YHPeJoB03oA2gIR0CRoXXYlIEsdX2UKGgGR0BjXmnGbTc7aAdN6ANoCEdAkaSzmbLEDXV9lChoBkdAYSDej2zv7WgHTegDaAhHQJGoeo73fyh1fZQoaAZHQGR6XCTEBKdoB03oA2gIR0CRqN/7SApbdX2UKGgGR0BaVkNe+mFbaAdN6ANoCEdAkalk+PikwnV9lChoBkdAZRw8KXv6TGgHTegDaAhHQJGq3zOHFgl1fZQoaAZHQGKvXhn8KohoB03oA2gIR0CRrpUZNwirdX2UKGgGR0BdyBM8HObBaAdN6ANoCEdAkbIfE0iyIHV9lChoBkdAYtIT6BRQ8GgHTegDaAhHQJGy7mT1TR91fZQoaAZHQGYDiS7oSthoB03oA2gIR0CRtF1TBInSdX2UKGgGR0Bh2fdhy8zzaAdN6ANoCEdAkbUcunMt9XV9lChoBkdAPQK1LJ0W/WgHS/poCEdAkbYjshPj43V9lChoBkdAYH7Dst03fmgHTegDaAhHQJHATfBN21V1fZQoaAZHQGHaUI9kjHJoB03oA2gIR0CRwyRBNVR2dX2UKGgGR0BmikYl6Z6VaAdN6ANoCEdAkcW8wxnFpHV9lChoBkdAYqDD3M6ikGgHTegDaAhHQJHlfTWoWHl1fZQoaAZHQF8Q0EX+ERJoB03oA2gIR0CR6Wku6ErYdX2UKGgGR0Bjnd3wCr93aAdN6ANoCEdAke/H6Eal13V9lChoBkdAZVaf2bobGWgHTegDaAhHQJHym2fChvl1fZQoaAZHQGGD4yGi5/doB03oA2gIR0CR9dezUqhEdX2UKGgGR0BdmO0CzTnaaAdN6ANoCEdAkfYug6EJ0HV9lChoBkdAYVlTH80k4WgHTegDaAhHQJH3/ssxwhp1fZQoaAZHQGEyGBWgezVoB03oA2gIR0CR+6GwzLwGdX2UKGgGR0BhtgzabnX/aAdN6ANoCEdAkf/MBIWgvnV9lChoBkdAY8jKmKqGUWgHTegDaAhHQJIAxTZQHiZ1fZQoaAZHQGQxPBBRhttoB03oA2gIR0CSAsSOR1YAdX2UKGgGR0Bg92z2OAAiaAdN6ANoCEdAkgPHLNfPX3V9lChoBkdAYZBZCfHxSmgHTegDaAhHQJIFPHOryUd1fZQoaAZHQGSz2Yv38GdoB03oA2gIR0CSDuyE+PildX2UKGgGR0BlaY4sEq2CaAdN6ANoCEdAkhD3CwbEP3V9lChoBkdAYb9L0SRKYmgHTegDaAhHQJIS84bS7Xh1fZQoaAZHQGbYnGS6lLxoB03oA2gIR0CSL/i5/b0wdX2UKGgGR0Bjqs5QxesxaAdN6ANoCEdAkjXvwEyLynV9lChoBkdAYTXIoVmBfGgHTegDaAhHQJI97lA/s3R1fZQoaAZHQGggHRTjvNNoB03oA2gIR0CSQTkLQXyidX2UKGgGR0BgVf6Q/5ckaAdN6ANoCEdAkkTpEMLF43V9lChoBkdAY4CMWGh24mgHTegDaAhHQJJFUD4gzP91fZQoaAZHQGNzRyXD3uhoB03oA2gIR0CSR2VMVUModX2UKGgGR0BjgABV+7UYaAdN6ANoCEdAkksfdRBNVXV9lChoBkdAZh16fra/RGgHTegDaAhHQJJOtd4Vym11fZQoaAZHQGhIMxGlQ/JoB03oA2gIR0CST5CyQgcMdX2UKGgGR0BdRTLSuyNXaAdN6ANoCEdAklEmTgVGkXV9lChoBkdAZBSNgjQiRmgHTegDaAhHQJJR8AEMb3p1fZQoaAZHQGZn4ixFAmloB03oA2gIR0CSUyMmWt2cdX2UKGgGR0BcGG/zreImaAdN6ANoCEdAklzWALApKHV9lChoBkdAY+4vmozeoGgHTegDaAhHQJJe8aJhvzh1fZQoaAZHQF0FO2RaHKxoB03oA2gIR0CSYOD2rXDndWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True  True  True  True  True  True  True  True]", "bounded_above": "[ True  True  True  True  True  True  True  True]", "_shape": [8], "low": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "low_repr": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high_repr": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.4.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}