---
library_name: sklearn
tags:
- sklearn
- skops
- tabular-regression
model_format: skops
model_file: model.skops
widget:
structuredData:
x0:
- -0.8513550738681201
- 0.3565756375241982
- -0.5493723960200406
x1:
- -0.9801306786815437
- 0.16144422497410207
- -0.5044744688250247
x2:
- -0.40478372420423153
- 0.465368421656243
- -0.6223217606693501
x3:
- -0.5539725609683268
- 0.3927870023121129
- 1.2133119571551605
x4:
- -0.3313192794050237
- -0.5263980861381337
- 0.14244353694681483
x5:
- -0.6076784605515674
- -0.3021390244014409
- 0.37259389709675395
x6:
- 0.31079384041548314
- -0.11643850592424994
- -0.7648620670356181
x7:
- 1.59019987177207
- -0.6288517674735005
- -0.6288517674735005
x8:
- -0.9276885579794873
- 1.0779479723001086
- 1.0779479723001086
x9:
- -0.5836191855240799
- -0.5836191855240799
- -0.5836191855240799
---
# Model description
[More Information Needed]
## Intended uses & limitations
[More Information Needed]
## Training Procedure
### Hyperparameters
The model is trained with below hyperparameters.
Click to expand
| Hyperparameter | Value |
|-------------------|---------|
| C | 1.0 |
| class_weight | |
| dual | False |
| fit_intercept | True |
| intercept_scaling | 1 |
| l1_ratio | |
| max_iter | 100 |
| multi_class | auto |
| n_jobs | |
| penalty | l2 |
| random_state | 0 |
| solver | lbfgs |
| tol | 0.0001 |
| verbose | 0 |
| warm_start | False |
LogisticRegression(random_state=0)In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
LogisticRegression(random_state=0)