File size: 5,548 Bytes
ee586d1
5a6e371
ee586d1
 
 
 
5a6e371
 
 
ee586d1
5a6e371
 
 
 
 
 
 
da6543c
5a6e371
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee586d1
 
 
aa9edca
5a6e371
 
 
 
 
 
 
 
 
 
 
 
 
322be16
5a6e371
ee586d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
---
license: apache-2.0
language:
- ja
tags:
- automatic-speech-recognition
- robust-speech-event
- common-voice
- ja
model-index:
- name: wav2vec2-xls-r-1b
  results:
  - task: 
      name: Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Common Voice 7.0
      type: mozilla-foundation/common_voice_7_0
      args: ja
    metrics:
       - name: Test WER (with LM)
         type: wer
         value: 7.98
       - name: Test CER (with LM)
         type: cer
         value: 3.42
  - task:
      name: Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Common Voice 8.0
      type: mozilla-foundation/common_voice_8_0
      args: ja
    metrics:
       - name: Test WER (with LM)
         type: wer
         value: 7.88
       - name: Test CER (with LM)
         type: cer
         value: 3.35
  - task:
      name: Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Robust Speech Event - Dev Data
      type: speech-recognition-community-v2/dev_data
      args: ja
    metrics:
       - name: Test WER (with LM)
         type: wer
         value: 28.07
       - name: Test CER (with LM)
         type: cer
         value: 16.27 
---
## Model description

This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on my collection of Public Japanese Voice datasets for research [Common Voice 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0), [JUST](https://sites.google.com/site/shinnosuketakamichi/publication/jsut) (Japanese speech corpus of Saruwatari-lab., University of Tokyo), [JSSS](https://sites.google.com/site/shinnosuketakamichi/research-topics/jsss_corpus) (Japanese speech corpus for summarization and simplification), [CSS10](https://paperswithcode.com/dataset/css10) (A collection of single speaker speech datasets). You can find in preprocessing dataset in here VUMICHIEN/COMMON_VOICE_LARGE_JSUT_JSSS_CSS10.
### Benchmark WER result:
| | [COMMON VOICE 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0) | [COMMON VOICE 8.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_8_0)
|---|---|---|
|without LM| 10.96 | 10.91 |
|with 4-grams LM| 7.98 | 7.88 |
### Benchmark CER result:
| | [COMMON VOICE 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0) | [COMMON VOICE 8.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_8_0)
|---|---|---|
|without LM| 4.28 | 4.22 |
|with 4-grams LM| 3.42 | 3.35 |
## Evaluation
Please use the eval.py file to run the evaluation:
```python
python eval.py --model_id vumichien/wav2vec2-xls-r-1b-japanese --dataset mozilla-foundation/common_voice_7_0 --config ja --split test --log_outputs
```

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 100.0
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Wer    | Cer    |
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|
| 2.2896        | 3.37  | 1500  | 0.4748          | 0.4013 | 0.1767 |
| 1.1608        | 6.74  | 3000  | 0.3350          | 0.3159 | 0.1456 |
| 1.1042        | 10.11 | 4500  | 0.3119          | 0.2971 | 0.1400 |
| 1.0494        | 13.48 | 6000  | 0.2974          | 0.2867 | 0.1353 |
| 1.0061        | 16.85 | 7500  | 0.2802          | 0.2746 | 0.1300 |
| 0.9629        | 20.22 | 9000  | 0.2844          | 0.2776 | 0.1326 |
| 0.9267        | 23.59 | 10500 | 0.2577          | 0.2603 | 0.1255 |
| 0.8984        | 26.96 | 12000 | 0.2508          | 0.2531 | 0.1226 |
| 0.8729        | 30.34 | 13500 | 0.2629          | 0.2606 | 0.1254 |
| 0.8546        | 33.71 | 15000 | 0.2402          | 0.2447 | 0.1193 |
| 0.8304        | 37.08 | 16500 | 0.2532          | 0.2472 | 0.1209 |
| 0.8075        | 40.45 | 18000 | 0.2439          | 0.2469 | 0.1198 |
| 0.7827        | 43.82 | 19500 | 0.2387          | 0.2372 | 0.1167 |
| 0.7627        | 47.19 | 21000 | 0.2344          | 0.2331 | 0.1147 |
| 0.7402        | 50.56 | 22500 | 0.2314          | 0.2299 | 0.1135 |
| 0.718         | 53.93 | 24000 | 0.2257          | 0.2267 | 0.1114 |
| 0.7016        | 57.3  | 25500 | 0.2204          | 0.2184 | 0.1089 |
| 0.6804        | 60.67 | 27000 | 0.2227          | 0.2181 | 0.1085 |
| 0.6625        | 64.04 | 28500 | 0.2138          | 0.2112 | 0.1058 |
| 0.6465        | 67.42 | 30000 | 0.2141          | 0.2081 | 0.1044 |
| 0.6238        | 70.79 | 31500 | 0.2172          | 0.2082 | 0.1050 |
| 0.6062        | 74.16 | 33000 | 0.2174          | 0.2058 | 0.1043 |
| 0.588         | 77.53 | 34500 | 0.2156          | 0.2034 | 0.1027 |
| 0.5722        | 80.9  | 36000 | 0.2162          | 0.2032 | 0.1029 |
| 0.5585        | 84.27 | 37500 | 0.2156          | 0.2022 | 0.1021 |
| 0.5456        | 87.64 | 39000 | 0.2126          | 0.1993 | 0.1009 |
| 0.5325        | 91.01 | 40500 | 0.2121          | 0.1966 | 0.1003 |
| 0.5229        | 94.38 | 42000 | 0.2104          | 0.1941 | 0.0991 |
| 0.5134        | 97.75 | 43500 | 0.2108          | 0.1948 | 0.0992 |


### Framework versions

- Transformers 4.16.0.dev0
- Pytorch 1.10.1+cu102
- Datasets 1.17.1.dev0
- Tokenizers 0.11.0