File size: 5,548 Bytes
ee586d1 5a6e371 ee586d1 5a6e371 ee586d1 5a6e371 da6543c 5a6e371 ee586d1 aa9edca 5a6e371 322be16 5a6e371 ee586d1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 |
---
license: apache-2.0
language:
- ja
tags:
- automatic-speech-recognition
- robust-speech-event
- common-voice
- ja
model-index:
- name: wav2vec2-xls-r-1b
results:
- task:
name: Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 7.0
type: mozilla-foundation/common_voice_7_0
args: ja
metrics:
- name: Test WER (with LM)
type: wer
value: 7.98
- name: Test CER (with LM)
type: cer
value: 3.42
- task:
name: Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 8.0
type: mozilla-foundation/common_voice_8_0
args: ja
metrics:
- name: Test WER (with LM)
type: wer
value: 7.88
- name: Test CER (with LM)
type: cer
value: 3.35
- task:
name: Speech Recognition
type: automatic-speech-recognition
dataset:
name: Robust Speech Event - Dev Data
type: speech-recognition-community-v2/dev_data
args: ja
metrics:
- name: Test WER (with LM)
type: wer
value: 28.07
- name: Test CER (with LM)
type: cer
value: 16.27
---
## Model description
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on my collection of Public Japanese Voice datasets for research [Common Voice 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0), [JUST](https://sites.google.com/site/shinnosuketakamichi/publication/jsut) (Japanese speech corpus of Saruwatari-lab., University of Tokyo), [JSSS](https://sites.google.com/site/shinnosuketakamichi/research-topics/jsss_corpus) (Japanese speech corpus for summarization and simplification), [CSS10](https://paperswithcode.com/dataset/css10) (A collection of single speaker speech datasets). You can find in preprocessing dataset in here VUMICHIEN/COMMON_VOICE_LARGE_JSUT_JSSS_CSS10.
### Benchmark WER result:
| | [COMMON VOICE 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0) | [COMMON VOICE 8.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_8_0)
|---|---|---|
|without LM| 10.96 | 10.91 |
|with 4-grams LM| 7.98 | 7.88 |
### Benchmark CER result:
| | [COMMON VOICE 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0) | [COMMON VOICE 8.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_8_0)
|---|---|---|
|without LM| 4.28 | 4.22 |
|with 4-grams LM| 3.42 | 3.35 |
## Evaluation
Please use the eval.py file to run the evaluation:
```python
python eval.py --model_id vumichien/wav2vec2-xls-r-1b-japanese --dataset mozilla-foundation/common_voice_7_0 --config ja --split test --log_outputs
```
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 100.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|
| 2.2896 | 3.37 | 1500 | 0.4748 | 0.4013 | 0.1767 |
| 1.1608 | 6.74 | 3000 | 0.3350 | 0.3159 | 0.1456 |
| 1.1042 | 10.11 | 4500 | 0.3119 | 0.2971 | 0.1400 |
| 1.0494 | 13.48 | 6000 | 0.2974 | 0.2867 | 0.1353 |
| 1.0061 | 16.85 | 7500 | 0.2802 | 0.2746 | 0.1300 |
| 0.9629 | 20.22 | 9000 | 0.2844 | 0.2776 | 0.1326 |
| 0.9267 | 23.59 | 10500 | 0.2577 | 0.2603 | 0.1255 |
| 0.8984 | 26.96 | 12000 | 0.2508 | 0.2531 | 0.1226 |
| 0.8729 | 30.34 | 13500 | 0.2629 | 0.2606 | 0.1254 |
| 0.8546 | 33.71 | 15000 | 0.2402 | 0.2447 | 0.1193 |
| 0.8304 | 37.08 | 16500 | 0.2532 | 0.2472 | 0.1209 |
| 0.8075 | 40.45 | 18000 | 0.2439 | 0.2469 | 0.1198 |
| 0.7827 | 43.82 | 19500 | 0.2387 | 0.2372 | 0.1167 |
| 0.7627 | 47.19 | 21000 | 0.2344 | 0.2331 | 0.1147 |
| 0.7402 | 50.56 | 22500 | 0.2314 | 0.2299 | 0.1135 |
| 0.718 | 53.93 | 24000 | 0.2257 | 0.2267 | 0.1114 |
| 0.7016 | 57.3 | 25500 | 0.2204 | 0.2184 | 0.1089 |
| 0.6804 | 60.67 | 27000 | 0.2227 | 0.2181 | 0.1085 |
| 0.6625 | 64.04 | 28500 | 0.2138 | 0.2112 | 0.1058 |
| 0.6465 | 67.42 | 30000 | 0.2141 | 0.2081 | 0.1044 |
| 0.6238 | 70.79 | 31500 | 0.2172 | 0.2082 | 0.1050 |
| 0.6062 | 74.16 | 33000 | 0.2174 | 0.2058 | 0.1043 |
| 0.588 | 77.53 | 34500 | 0.2156 | 0.2034 | 0.1027 |
| 0.5722 | 80.9 | 36000 | 0.2162 | 0.2032 | 0.1029 |
| 0.5585 | 84.27 | 37500 | 0.2156 | 0.2022 | 0.1021 |
| 0.5456 | 87.64 | 39000 | 0.2126 | 0.1993 | 0.1009 |
| 0.5325 | 91.01 | 40500 | 0.2121 | 0.1966 | 0.1003 |
| 0.5229 | 94.38 | 42000 | 0.2104 | 0.1941 | 0.0991 |
| 0.5134 | 97.75 | 43500 | 0.2108 | 0.1948 | 0.0992 |
### Framework versions
- Transformers 4.16.0.dev0
- Pytorch 1.10.1+cu102
- Datasets 1.17.1.dev0
- Tokenizers 0.11.0
|