File size: 5,349 Bytes
c798ce8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
#!/usr/bin/env python3
#!pip install mecab-python3 unidic-lite pykakasi

from datasets import load_dataset, load_metric, Audio, Dataset
from transformers import pipeline, AutoFeatureExtractor
import re
import argparse
import unicodedata
from typing import Dict
import MeCab
import pykakasi
import torch

def log_results(result: Dataset, args: Dict[str, str]):
    """ DO NOT CHANGE. This function computes and logs the result metrics. """

    log_outputs = args.log_outputs
    dataset_id = "_".join(args.dataset.split("/") + [args.config, args.split])

    # load metric
    wer = load_metric("wer")
    cer = load_metric("cer")

    # compute metrics
    wer_result = wer.compute(references=result["target"], predictions=result["prediction"])
    cer_result = cer.compute(references=result["target"], predictions=result["prediction"])

    # print & log results
    result_str = (
        f"WER: {wer_result}\n"
        f"CER: {cer_result}"
    )
    print(result_str)

    with open(f"{dataset_id}_eval_results.txt", "w") as f:
        f.write(result_str)

    # log all results in text file. Possibly interesting for analysis
    if log_outputs is not None:
        pred_file = f"log_{dataset_id}_predictions.txt"
        target_file = f"log_{dataset_id}_targets.txt"

        with open(pred_file, "w") as p, open(target_file, "w") as t:

            # mapping function to write output
            def write_to_file(batch, i):
                p.write(f"{i}" + "\n")
                p.write(batch["prediction"] + "\n")
                t.write(f"{i}" + "\n")
                t.write(batch["target"] + "\n")

            result.map(write_to_file, with_indices=True)


def normalize_text(text: str) -> str:
    """ DO ADAPT FOR YOUR USE CASE. this function normalizes the target text. """

    chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\‘\”\�\‘\、\。\.\!\,\・\―\─\~\「\」\『\』\〆\。\※\[\]\{\}\「\」\〇\?\…\=\+\〜\'\-\・\(\)\/\—\`\’\–]'
    FULLWIDTH_TO_HALFWIDTH = str.maketrans(
    ' 0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ!゛#$%&()*+、ー。/:;〈=〉?@[]^_‘{|}~',
    ' 0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ!"#$%&()*+,-./:;<=>?@[]^_`{|}~',
    )
    wakati = MeCab.Tagger("-Owakati")
    kakasi = pykakasi.kakasi()
    kakasi.setMode("J","H")      # kanji to hiragana
    kakasi.setMode("K","H")      # katakana to hiragana
    conv = kakasi.getConverter()

    def fullwidth_to_halfwidth(s):
        return s.translate(FULLWIDTH_TO_HALFWIDTH)

    text = fullwidth_to_halfwidth(text)
    text = re.sub(chars_to_ignore_regex, " ", text).lower()
    text = wakati.parse(text)
    text = conv.do(text)
    text = " ".join(text.split()) + " "
    return text


def main(args):
    # load dataset
    dataset = load_dataset(args.dataset, args.config, split=args.split, use_auth_token=True)

    # for testing: only process the first two examples as a test
    # dataset = dataset.select(range(10))

    # load processor
    feature_extractor = AutoFeatureExtractor.from_pretrained(args.model_id)
    sampling_rate = feature_extractor.sampling_rate

    # resample audio
    dataset = dataset.cast_column("audio", Audio(sampling_rate=sampling_rate))

    # load eval pipeline
    device = torch.cuda.current_device() if torch.cuda.is_available() else -1
    asr = pipeline("automatic-speech-recognition", model=args.model_id, device = device)

    # map function to decode audio
    def map_to_pred(batch):
        prediction = asr(batch["audio"]["array"], chunk_length_s=args.chunk_length_s, stride_length_s=args.stride_length_s)

        batch["prediction"] = prediction["text"]
        batch["target"] = normalize_text(batch["sentence"])
        return batch

    # run inference on all examples
    result = dataset.map(map_to_pred, remove_columns=dataset.column_names)

    # compute and log_results
    # do not change function below
    log_results(result, args)


if __name__ == "__main__":
    parser = argparse.ArgumentParser()

    parser.add_argument(
        "--model_id", type=str, required=True, help="Model identifier. Should be loadable with 🤗 Transformers"
    )
    parser.add_argument(
        "--dataset", type=str, required=True, help="Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets"
    )
    parser.add_argument(
        "--config", type=str, required=True, help="Config of the dataset. *E.g.* `'en'`  for Common Voice"
    )
    parser.add_argument(
        "--split", type=str, required=True, help="Split of the dataset. *E.g.* `'test'`"
    )
    parser.add_argument(
        "--chunk_length_s", type=float, default=None, help="Chunk length in seconds. Defaults to None. For long audio files a good value would be 5.0 seconds."
    )
    parser.add_argument(
        "--stride_length_s", type=float, default=None, help="Stride of the audio chunks. Defaults to None. For long audio files a good value would be 1.0 seconds."
    )
    parser.add_argument(
        "--log_outputs", action='store_true', help="If defined, write outputs to log file for analysis."
    )
    args = parser.parse_args()

    main(args)