File size: 5,955 Bytes
ee586d1
5a6e371
ee586d1
 
 
 
5a6e371
 
 
75bf2e7
 
ee586d1
5a6e371
 
ea3e028
5a6e371
 
 
 
da6543c
5a6e371
 
ea3e028
 
 
 
 
 
5a6e371
 
 
 
 
 
 
 
ea3e028
 
 
 
 
 
5a6e371
 
 
 
 
 
 
 
ea3e028
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee586d1
 
 
94700a6
 
7a8036a
ce4178e
94700a6
5a6e371
 
 
 
 
 
 
 
 
 
 
 
 
630fd43
ddb0d76
5a6e371
ee586d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
---
license: apache-2.0
language:
- ja
tags:
- automatic-speech-recognition
- robust-speech-event
- common-voice
- ja
datasets:
- mozilla-foundation/common_voice_7_0
model-index:
- name: wav2vec2-xls-r-1b
  results:
  - task:
      name: Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Common Voice 7.0
      type: mozilla-foundation/common_voice_7_0
      args: ja
    metrics:
    - name: Test WER (with LM)
      type: wer
      value: 7.98
    - name: Test CER (with LM)
      type: cer
      value: 3.42
  - task:
      name: Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Common Voice 8.0
      type: mozilla-foundation/common_voice_8_0
      args: ja
    metrics:
    - name: Test WER (with LM)
      type: wer
      value: 7.88
    - name: Test CER (with LM)
      type: cer
      value: 3.35
  - task:
      name: Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Robust Speech Event - Dev Data
      type: speech-recognition-community-v2/dev_data
      args: ja
    metrics:
    - name: Test WER (with LM)
      type: wer
      value: 28.07
    - name: Test CER (with LM)
      type: cer
      value: 16.27
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Robust Speech Event - Test Data
      type: speech-recognition-community-v2/eval_data
      args: ja
    metrics:
    - name: Test CER
      type: cer
      value: 19.89
---
## Model description

This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on my collection of Public Japanese Voice datasets for research [Common Voice 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0), [JUST](https://sites.google.com/site/shinnosuketakamichi/publication/jsut) (Japanese speech corpus of Saruwatari-lab., University of Tokyo), [JSSS](https://sites.google.com/site/shinnosuketakamichi/research-topics/jsss_corpus) (Japanese speech corpus for summarization and simplification), [CSS10](https://paperswithcode.com/dataset/css10) (A collection of single speaker speech datasets). You can find in preprocessing dataset in here VUMICHIEN/COMMON_VOICE_LARGE_JSUT_JSSS_CSS10. 

### Total training data:
~60 hours

### Benchmark WER result:
| | [COMMON VOICE 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0) | [COMMON VOICE 8.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_8_0)
|---|---|---|
|without LM| 10.96 | 10.91 |
|with 4-grams LM| 7.98 | 7.88 |
### Benchmark CER result:
| | [COMMON VOICE 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0) | [COMMON VOICE 8.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_8_0)
|---|---|---|
|without LM| 4.28 | 4.22 |
|with 4-grams LM| 3.42 | 3.35 |
## Evaluation
Please use the eval.py file to run the evaluation:
```python
pip install mecab-python3 unidic-lite pykakasi
python eval.py --model_id vumichien/wav2vec2-xls-r-1b-japanese --dataset mozilla-foundation/common_voice_7_0 --config ja --split test --chunk_length_s 5.0 --stride_length_s 1.0 --log_outputs
```

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 100.0
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Wer    | Cer    |
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|
| 2.2896        | 3.37  | 1500  | 0.4748          | 0.4013 | 0.1767 |
| 1.1608        | 6.74  | 3000  | 0.3350          | 0.3159 | 0.1456 |
| 1.1042        | 10.11 | 4500  | 0.3119          | 0.2971 | 0.1400 |
| 1.0494        | 13.48 | 6000  | 0.2974          | 0.2867 | 0.1353 |
| 1.0061        | 16.85 | 7500  | 0.2802          | 0.2746 | 0.1300 |
| 0.9629        | 20.22 | 9000  | 0.2844          | 0.2776 | 0.1326 |
| 0.9267        | 23.59 | 10500 | 0.2577          | 0.2603 | 0.1255 |
| 0.8984        | 26.96 | 12000 | 0.2508          | 0.2531 | 0.1226 |
| 0.8729        | 30.34 | 13500 | 0.2629          | 0.2606 | 0.1254 |
| 0.8546        | 33.71 | 15000 | 0.2402          | 0.2447 | 0.1193 |
| 0.8304        | 37.08 | 16500 | 0.2532          | 0.2472 | 0.1209 |
| 0.8075        | 40.45 | 18000 | 0.2439          | 0.2469 | 0.1198 |
| 0.7827        | 43.82 | 19500 | 0.2387          | 0.2372 | 0.1167 |
| 0.7627        | 47.19 | 21000 | 0.2344          | 0.2331 | 0.1147 |
| 0.7402        | 50.56 | 22500 | 0.2314          | 0.2299 | 0.1135 |
| 0.718         | 53.93 | 24000 | 0.2257          | 0.2267 | 0.1114 |
| 0.7016        | 57.3  | 25500 | 0.2204          | 0.2184 | 0.1089 |
| 0.6804        | 60.67 | 27000 | 0.2227          | 0.2181 | 0.1085 |
| 0.6625        | 64.04 | 28500 | 0.2138          | 0.2112 | 0.1058 |
| 0.6465        | 67.42 | 30000 | 0.2141          | 0.2081 | 0.1044 |
| 0.6238        | 70.79 | 31500 | 0.2172          | 0.2082 | 0.1050 |
| 0.6062        | 74.16 | 33000 | 0.2174          | 0.2058 | 0.1043 |
| 0.588         | 77.53 | 34500 | 0.2156          | 0.2034 | 0.1027 |
| 0.5722        | 80.9  | 36000 | 0.2162          | 0.2032 | 0.1029 |
| 0.5585        | 84.27 | 37500 | 0.2156          | 0.2022 | 0.1021 |
| 0.5456        | 87.64 | 39000 | 0.2126          | 0.1993 | 0.1009 |
| 0.5325        | 91.01 | 40500 | 0.2121          | 0.1966 | 0.1003 |
| 0.5229        | 94.38 | 42000 | 0.2104          | 0.1941 | 0.0991 |
| 0.5134        | 97.75 | 43500 | 0.2108          | 0.1948 | 0.0992 |


### Framework versions

- Transformers 4.16.0.dev0
- Pytorch 1.10.1+cu102
- Datasets 1.17.1.dev0
- Tokenizers 0.11.0