--- license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - vumichien/preprocessed_jsut_jsss_css10_common_voice_11 metrics: - wer base_model: openai/whisper-medium model-index: - name: Whisper Medium Japanese results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: mozilla-foundation/common_voice_11_0 ja type: mozilla-foundation/common_voice_11_0 config: ja split: test args: ja metrics: - type: wer value: 8.7213 name: Wer - type: cer value: 5.4698 name: Cer - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: google/fleurs type: google/fleurs config: ja_jp split: test metrics: - type: wer value: 12.825163229350192 name: WER - type: cer value: 7.797336057522297 name: CER --- # openai/whisper-medium This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the vumichien/preprocessed_jsut_jsss_css10_common_voice_11 dataset. It achieves the following results on the evaluation set: - Loss: 0.2836 - Wer: 8.7213 - Cer: 5.4698 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 10000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:| | 0.1106 | 1.1 | 1000 | 0.1827 | 10.3480 | 6.4784 | | 0.0487 | 2.2 | 2000 | 0.1799 | 9.4764 | 5.9127 | | 0.0243 | 3.29 | 3000 | 0.1950 | 9.2111 | 5.8069 | | 0.0106 | 4.39 | 4000 | 0.2113 | 8.9713 | 5.5756 | | 0.0054 | 5.49 | 5000 | 0.2325 | 8.6470 | 5.4041 | | 0.0031 | 6.59 | 6000 | 0.2462 | 8.7078 | 5.4409 | | 0.0014 | 7.68 | 7000 | 0.2608 | 8.7145 | 5.4849 | | 0.0009 | 8.78 | 8000 | 0.2695 | 8.6301 | 5.3876 | | 0.0004 | 9.88 | 9000 | 0.2794 | 8.6064 | 5.3528 | | 0.0003 | 10.98 | 10000 | 0.2836 | 8.7213 | 5.4698 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2