End of training
Browse files
README.md
ADDED
@@ -0,0 +1,145 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: t5-base
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- glue
|
8 |
+
metrics:
|
9 |
+
- accuracy
|
10 |
+
model-index:
|
11 |
+
- name: t5-base_cola_dense
|
12 |
+
results:
|
13 |
+
- task:
|
14 |
+
name: Text Classification
|
15 |
+
type: text-classification
|
16 |
+
dataset:
|
17 |
+
name: glue
|
18 |
+
type: glue
|
19 |
+
config: cola
|
20 |
+
split: validation
|
21 |
+
args: cola
|
22 |
+
metrics:
|
23 |
+
- name: Accuracy
|
24 |
+
type: accuracy
|
25 |
+
value: 0.8370086289549377
|
26 |
+
---
|
27 |
+
|
28 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
29 |
+
should probably proofread and complete it, then remove this comment. -->
|
30 |
+
|
31 |
+
# t5-base_cola_dense
|
32 |
+
|
33 |
+
This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the glue dataset.
|
34 |
+
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 0.4482
|
36 |
+
- Accuracy: 0.8370
|
37 |
+
|
38 |
+
## Model description
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Intended uses & limitations
|
43 |
+
|
44 |
+
More information needed
|
45 |
+
|
46 |
+
## Training and evaluation data
|
47 |
+
|
48 |
+
More information needed
|
49 |
+
|
50 |
+
## Training procedure
|
51 |
+
|
52 |
+
### Training hyperparameters
|
53 |
+
|
54 |
+
The following hyperparameters were used during training:
|
55 |
+
- learning_rate: 5e-05
|
56 |
+
- train_batch_size: 32
|
57 |
+
- eval_batch_size: 64
|
58 |
+
- seed: 42
|
59 |
+
- distributed_type: multi-GPU
|
60 |
+
- gradient_accumulation_steps: 2
|
61 |
+
- total_train_batch_size: 64
|
62 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
63 |
+
- lr_scheduler_type: linear
|
64 |
+
- lr_scheduler_warmup_steps: 200
|
65 |
+
- num_epochs: 5
|
66 |
+
|
67 |
+
### Training results
|
68 |
+
|
69 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
70 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
71 |
+
| 0.6484 | 0.07 | 10 | 0.6254 | 0.6913 |
|
72 |
+
| 0.6188 | 0.15 | 20 | 0.6181 | 0.6913 |
|
73 |
+
| 0.625 | 0.22 | 30 | 0.6137 | 0.6913 |
|
74 |
+
| 0.5744 | 0.3 | 40 | 0.6063 | 0.6913 |
|
75 |
+
| 0.6055 | 0.37 | 50 | 0.5963 | 0.6913 |
|
76 |
+
| 0.5723 | 0.45 | 60 | 0.5788 | 0.6913 |
|
77 |
+
| 0.5777 | 0.52 | 70 | 0.5527 | 0.6913 |
|
78 |
+
| 0.5332 | 0.6 | 80 | 0.5117 | 0.7354 |
|
79 |
+
| 0.4662 | 0.67 | 90 | 0.5060 | 0.7843 |
|
80 |
+
| 0.4936 | 0.75 | 100 | 0.4717 | 0.7929 |
|
81 |
+
| 0.4898 | 0.82 | 110 | 0.5304 | 0.8015 |
|
82 |
+
| 0.4844 | 0.9 | 120 | 0.4771 | 0.8006 |
|
83 |
+
| 0.4297 | 0.97 | 130 | 0.4673 | 0.7987 |
|
84 |
+
| 0.4658 | 1.04 | 140 | 0.4927 | 0.8063 |
|
85 |
+
| 0.3992 | 1.12 | 150 | 0.4884 | 0.8121 |
|
86 |
+
| 0.4752 | 1.19 | 160 | 0.4838 | 0.8102 |
|
87 |
+
| 0.3934 | 1.27 | 170 | 0.4714 | 0.8092 |
|
88 |
+
| 0.4662 | 1.34 | 180 | 0.5192 | 0.7929 |
|
89 |
+
| 0.4404 | 1.42 | 190 | 0.4719 | 0.8111 |
|
90 |
+
| 0.3746 | 1.49 | 200 | 0.5077 | 0.8015 |
|
91 |
+
| 0.4465 | 1.57 | 210 | 0.4425 | 0.8073 |
|
92 |
+
| 0.3829 | 1.64 | 220 | 0.4844 | 0.8130 |
|
93 |
+
| 0.4021 | 1.72 | 230 | 0.4659 | 0.8169 |
|
94 |
+
| 0.4225 | 1.79 | 240 | 0.4277 | 0.8130 |
|
95 |
+
| 0.4297 | 1.87 | 250 | 0.4677 | 0.8150 |
|
96 |
+
| 0.3476 | 1.94 | 260 | 0.4455 | 0.8207 |
|
97 |
+
| 0.4159 | 2.01 | 270 | 0.5063 | 0.8188 |
|
98 |
+
| 0.3371 | 2.09 | 280 | 0.4648 | 0.8265 |
|
99 |
+
| 0.3383 | 2.16 | 290 | 0.5451 | 0.8178 |
|
100 |
+
| 0.3175 | 2.24 | 300 | 0.4551 | 0.8303 |
|
101 |
+
| 0.3553 | 2.31 | 310 | 0.4899 | 0.8303 |
|
102 |
+
| 0.3138 | 2.39 | 320 | 0.4887 | 0.8265 |
|
103 |
+
| 0.3196 | 2.46 | 330 | 0.4632 | 0.8265 |
|
104 |
+
| 0.3132 | 2.54 | 340 | 0.5126 | 0.8207 |
|
105 |
+
| 0.3167 | 2.61 | 350 | 0.4661 | 0.8245 |
|
106 |
+
| 0.3757 | 2.69 | 360 | 0.4596 | 0.8245 |
|
107 |
+
| 0.3346 | 2.76 | 370 | 0.4650 | 0.8265 |
|
108 |
+
| 0.3018 | 2.84 | 380 | 0.4672 | 0.8284 |
|
109 |
+
| 0.3338 | 2.91 | 390 | 0.4822 | 0.8293 |
|
110 |
+
| 0.3496 | 2.99 | 400 | 0.4677 | 0.8322 |
|
111 |
+
| 0.248 | 3.06 | 410 | 0.4349 | 0.8332 |
|
112 |
+
| 0.2804 | 3.13 | 420 | 0.5308 | 0.8322 |
|
113 |
+
| 0.292 | 3.21 | 430 | 0.4757 | 0.8284 |
|
114 |
+
| 0.249 | 3.28 | 440 | 0.5145 | 0.8284 |
|
115 |
+
| 0.315 | 3.36 | 450 | 0.6137 | 0.8322 |
|
116 |
+
| 0.2996 | 3.43 | 460 | 0.5499 | 0.8341 |
|
117 |
+
| 0.2986 | 3.51 | 470 | 0.4774 | 0.8332 |
|
118 |
+
| 0.3124 | 3.58 | 480 | 0.5733 | 0.8284 |
|
119 |
+
| 0.2809 | 3.66 | 490 | 0.4938 | 0.8341 |
|
120 |
+
| 0.213 | 3.73 | 500 | 0.5208 | 0.8332 |
|
121 |
+
| 0.3106 | 3.81 | 510 | 0.4609 | 0.8322 |
|
122 |
+
| 0.2226 | 3.88 | 520 | 0.5320 | 0.8274 |
|
123 |
+
| 0.3108 | 3.96 | 530 | 0.5457 | 0.8255 |
|
124 |
+
| 0.2456 | 4.03 | 540 | 0.4865 | 0.8322 |
|
125 |
+
| 0.223 | 4.1 | 550 | 0.5540 | 0.8313 |
|
126 |
+
| 0.1884 | 4.18 | 560 | 0.5363 | 0.8341 |
|
127 |
+
| 0.1934 | 4.25 | 570 | 0.5706 | 0.8332 |
|
128 |
+
| 0.1793 | 4.33 | 580 | 0.5814 | 0.8322 |
|
129 |
+
| 0.2952 | 4.4 | 590 | 0.5305 | 0.8360 |
|
130 |
+
| 0.2915 | 4.48 | 600 | 0.5104 | 0.8332 |
|
131 |
+
| 0.259 | 4.55 | 610 | 0.5076 | 0.8428 |
|
132 |
+
| 0.2453 | 4.63 | 620 | 0.5188 | 0.8351 |
|
133 |
+
| 0.1903 | 4.7 | 630 | 0.5396 | 0.8399 |
|
134 |
+
| 0.2573 | 4.78 | 640 | 0.5584 | 0.8332 |
|
135 |
+
| 0.2787 | 4.85 | 650 | 0.5340 | 0.8360 |
|
136 |
+
| 0.2256 | 4.93 | 660 | 0.5175 | 0.8351 |
|
137 |
+
| 0.257 | 5.0 | 670 | 0.4482 | 0.8370 |
|
138 |
+
|
139 |
+
|
140 |
+
### Framework versions
|
141 |
+
|
142 |
+
- Transformers 4.33.3
|
143 |
+
- Pytorch 2.0.1+cu118
|
144 |
+
- Datasets 2.14.5
|
145 |
+
- Tokenizers 0.13.3
|