vxbrandon commited on
Commit
2687168
1 Parent(s): ec8bb3b

End of training

Browse files
Files changed (1) hide show
  1. README.md +121 -68
README.md CHANGED
@@ -22,7 +22,7 @@ model-index:
22
  metrics:
23
  - name: Accuracy
24
  type: accuracy
25
- value: 0.9243119266055045
26
  ---
27
 
28
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -32,8 +32,8 @@ should probably proofread and complete it, then remove this comment. -->
32
 
33
  This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the glue dataset.
34
  It achieves the following results on the evaluation set:
35
- - Loss: 0.3118
36
- - Accuracy: 0.9243
37
 
38
  ## Model description
39
 
@@ -56,7 +56,6 @@ The following hyperparameters were used during training:
56
  - train_batch_size: 32
57
  - eval_batch_size: 64
58
  - seed: 42
59
- - distributed_type: multi-GPU
60
  - gradient_accumulation_steps: 2
61
  - total_train_batch_size: 64
62
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
@@ -68,73 +67,127 @@ The following hyperparameters were used during training:
68
 
69
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
70
  |:-------------:|:-----:|:----:|:---------------:|:--------:|
71
- | 0.7121 | 0.01 | 10 | 0.6973 | 0.4989 |
72
- | 0.6719 | 0.02 | 20 | 0.6858 | 0.5092 |
73
- | 0.6727 | 0.03 | 30 | 0.6851 | 0.5092 |
74
- | 0.6621 | 0.04 | 40 | 0.6685 | 0.5092 |
75
- | 0.6359 | 0.05 | 50 | 0.6438 | 0.5975 |
76
- | 0.6219 | 0.06 | 60 | 0.6044 | 0.8280 |
77
- | 0.5648 | 0.07 | 70 | 0.5312 | 0.8452 |
78
- | 0.4609 | 0.08 | 80 | 0.4129 | 0.8899 |
79
- | 0.3486 | 0.09 | 90 | 0.3354 | 0.8842 |
80
- | 0.291 | 0.1 | 100 | 0.2685 | 0.9106 |
81
- | 0.28 | 0.1 | 110 | 0.2745 | 0.9014 |
82
- | 0.2078 | 0.11 | 120 | 0.2994 | 0.9025 |
83
- | 0.229 | 0.12 | 130 | 0.3541 | 0.8899 |
84
- | 0.3003 | 0.13 | 140 | 0.2503 | 0.9106 |
85
- | 0.1828 | 0.14 | 150 | 0.2430 | 0.9140 |
86
- | 0.1957 | 0.15 | 160 | 0.2335 | 0.9140 |
87
- | 0.2385 | 0.16 | 170 | 0.2552 | 0.9094 |
88
- | 0.1792 | 0.17 | 180 | 0.2527 | 0.9174 |
89
- | 0.2147 | 0.18 | 190 | 0.2657 | 0.9128 |
90
- | 0.23 | 0.19 | 200 | 0.2290 | 0.9151 |
91
- | 0.2376 | 0.2 | 210 | 0.2495 | 0.9209 |
92
- | 0.2331 | 0.21 | 220 | 0.2370 | 0.9243 |
93
- | 0.215 | 0.22 | 230 | 0.2258 | 0.9209 |
94
- | 0.1833 | 0.23 | 240 | 0.2225 | 0.9209 |
95
- | 0.2277 | 0.24 | 250 | 0.2202 | 0.9232 |
96
- | 0.1969 | 0.25 | 260 | 0.2164 | 0.9209 |
97
- | 0.2038 | 0.26 | 270 | 0.2147 | 0.9220 |
98
- | 0.1421 | 0.27 | 280 | 0.2172 | 0.9186 |
99
- | 0.1604 | 0.28 | 290 | 0.2408 | 0.9209 |
100
- | 0.1864 | 0.29 | 300 | 0.2336 | 0.9220 |
101
- | 0.1629 | 0.29 | 310 | 0.2293 | 0.9255 |
102
- | 0.2334 | 0.3 | 320 | 0.2201 | 0.9243 |
103
- | 0.1676 | 0.31 | 330 | 0.2108 | 0.9255 |
104
- | 0.1672 | 0.32 | 340 | 0.2233 | 0.9209 |
105
- | 0.1886 | 0.33 | 350 | 0.2229 | 0.9220 |
106
- | 0.2081 | 0.34 | 360 | 0.2227 | 0.9209 |
107
- | 0.2145 | 0.35 | 370 | 0.2185 | 0.9243 |
108
- | 0.1322 | 0.36 | 380 | 0.2286 | 0.9209 |
109
- | 0.2552 | 0.37 | 390 | 0.2193 | 0.9232 |
110
- | 0.1542 | 0.38 | 400 | 0.2234 | 0.9232 |
111
- | 0.2285 | 0.39 | 410 | 0.2190 | 0.9232 |
112
- | 0.1633 | 0.4 | 420 | 0.2256 | 0.9255 |
113
- | 0.1592 | 0.41 | 430 | 0.2386 | 0.9220 |
114
- | 0.1525 | 0.42 | 440 | 0.2369 | 0.9255 |
115
- | 0.2523 | 0.43 | 450 | 0.3649 | 0.9220 |
116
- | 0.1938 | 0.44 | 460 | 0.2203 | 0.9255 |
117
- | 0.1894 | 0.45 | 470 | 0.2067 | 0.9278 |
118
- | 0.143 | 0.46 | 480 | 0.2143 | 0.9266 |
119
- | 0.179 | 0.47 | 490 | 0.2090 | 0.9300 |
120
- | 0.1589 | 0.48 | 500 | 0.2288 | 0.9255 |
121
- | 0.1267 | 0.48 | 510 | 0.2129 | 0.9255 |
122
- | 0.1822 | 0.49 | 520 | 0.2193 | 0.9255 |
123
- | 0.172 | 0.5 | 530 | 0.3245 | 0.9220 |
124
- | 0.1268 | 0.51 | 540 | 0.3119 | 0.9300 |
125
- | 0.1243 | 0.52 | 550 | 0.3271 | 0.9255 |
126
- | 0.141 | 0.53 | 560 | 0.3441 | 0.9220 |
127
- | 0.1907 | 0.54 | 570 | 0.3205 | 0.9278 |
128
- | 0.1688 | 0.55 | 580 | 0.3240 | 0.9243 |
129
- | 0.1602 | 0.56 | 590 | 0.3146 | 0.9243 |
130
- | 0.1292 | 0.57 | 600 | 0.3043 | 0.9289 |
131
- | 0.1588 | 0.58 | 610 | 0.3345 | 0.9209 |
132
- | 0.1381 | 0.59 | 620 | 0.3118 | 0.9243 |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
133
 
134
 
135
  ### Framework versions
136
 
137
- - Transformers 4.33.3
138
  - Pytorch 2.0.1+cu118
139
  - Datasets 2.14.5
140
- - Tokenizers 0.13.3
 
22
  metrics:
23
  - name: Accuracy
24
  type: accuracy
25
+ value: 0.9231651376146789
26
  ---
27
 
28
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
32
 
33
  This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the glue dataset.
34
  It achieves the following results on the evaluation set:
35
+ - Loss: 0.2156
36
+ - Accuracy: 0.9232
37
 
38
  ## Model description
39
 
 
56
  - train_batch_size: 32
57
  - eval_batch_size: 64
58
  - seed: 42
 
59
  - gradient_accumulation_steps: 2
60
  - total_train_batch_size: 64
61
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
 
67
 
68
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
69
  |:-------------:|:-----:|:----:|:---------------:|:--------:|
70
+ | 0.6905 | 0.01 | 10 | 0.7366 | 0.5080 |
71
+ | 0.684 | 0.02 | 20 | 0.7306 | 0.5069 |
72
+ | 0.7013 | 0.03 | 30 | 0.7228 | 0.5080 |
73
+ | 0.6954 | 0.04 | 40 | 0.7114 | 0.5046 |
74
+ | 0.6893 | 0.05 | 50 | 0.7026 | 0.5034 |
75
+ | 0.6888 | 0.06 | 60 | 0.6912 | 0.5023 |
76
+ | 0.6814 | 0.07 | 70 | 0.6848 | 0.5034 |
77
+ | 0.679 | 0.08 | 80 | 0.6745 | 0.5206 |
78
+ | 0.6616 | 0.09 | 90 | 0.6685 | 0.5252 |
79
+ | 0.6604 | 0.1 | 100 | 0.6580 | 0.5378 |
80
+ | 0.6524 | 0.1 | 110 | 0.6378 | 0.6525 |
81
+ | 0.6344 | 0.11 | 120 | 0.6128 | 0.7271 |
82
+ | 0.5915 | 0.12 | 130 | 0.5672 | 0.8016 |
83
+ | 0.562 | 0.13 | 140 | 0.4903 | 0.8578 |
84
+ | 0.4653 | 0.14 | 150 | 0.3825 | 0.8796 |
85
+ | 0.3632 | 0.15 | 160 | 0.2811 | 0.8991 |
86
+ | 0.2754 | 0.16 | 170 | 0.3029 | 0.8933 |
87
+ | 0.2298 | 0.17 | 180 | 0.3001 | 0.8991 |
88
+ | 0.2819 | 0.18 | 190 | 0.2636 | 0.9083 |
89
+ | 0.2532 | 0.19 | 200 | 0.2321 | 0.9128 |
90
+ | 0.2512 | 0.2 | 210 | 0.2286 | 0.9186 |
91
+ | 0.2149 | 0.21 | 220 | 0.2424 | 0.9128 |
92
+ | 0.2466 | 0.22 | 230 | 0.2505 | 0.9140 |
93
+ | 0.1853 | 0.23 | 240 | 0.2178 | 0.9186 |
94
+ | 0.2279 | 0.24 | 250 | 0.2152 | 0.9186 |
95
+ | 0.219 | 0.25 | 260 | 0.2188 | 0.9197 |
96
+ | 0.2144 | 0.26 | 270 | 0.2179 | 0.9209 |
97
+ | 0.1507 | 0.27 | 280 | 0.2185 | 0.9186 |
98
+ | 0.1801 | 0.28 | 290 | 0.2473 | 0.9243 |
99
+ | 0.1735 | 0.29 | 300 | 0.2402 | 0.9128 |
100
+ | 0.1437 | 0.29 | 310 | 0.2436 | 0.9255 |
101
+ | 0.2221 | 0.3 | 320 | 0.2209 | 0.9163 |
102
+ | 0.1611 | 0.31 | 330 | 0.2101 | 0.9232 |
103
+ | 0.1813 | 0.32 | 340 | 0.2291 | 0.9174 |
104
+ | 0.1871 | 0.33 | 350 | 0.2386 | 0.9174 |
105
+ | 0.2126 | 0.34 | 360 | 0.2225 | 0.9197 |
106
+ | 0.2023 | 0.35 | 370 | 0.2116 | 0.9232 |
107
+ | 0.127 | 0.36 | 380 | 0.2155 | 0.9232 |
108
+ | 0.2769 | 0.37 | 390 | 0.2149 | 0.9243 |
109
+ | 0.1457 | 0.38 | 400 | 0.2166 | 0.9232 |
110
+ | 0.2129 | 0.39 | 410 | 0.2271 | 0.9232 |
111
+ | 0.1652 | 0.4 | 420 | 0.2308 | 0.9220 |
112
+ | 0.1783 | 0.41 | 430 | 0.2400 | 0.9278 |
113
+ | 0.1305 | 0.42 | 440 | 0.2404 | 0.9232 |
114
+ | 0.2595 | 0.43 | 450 | 0.2389 | 0.9209 |
115
+ | 0.1901 | 0.44 | 460 | 0.2102 | 0.9266 |
116
+ | 0.1993 | 0.45 | 470 | 0.2129 | 0.9255 |
117
+ | 0.147 | 0.46 | 480 | 0.2208 | 0.9232 |
118
+ | 0.1801 | 0.47 | 490 | 0.2143 | 0.9255 |
119
+ | 0.1716 | 0.48 | 500 | 0.2416 | 0.9209 |
120
+ | 0.1281 | 0.48 | 510 | 0.2152 | 0.9232 |
121
+ | 0.1837 | 0.49 | 520 | 0.2112 | 0.9243 |
122
+ | 0.1681 | 0.5 | 530 | 0.2178 | 0.9232 |
123
+ | 0.1408 | 0.51 | 540 | 0.2127 | 0.9243 |
124
+ | 0.1229 | 0.52 | 550 | 0.3322 | 0.9278 |
125
+ | 0.1304 | 0.53 | 560 | 0.3586 | 0.9209 |
126
+ | 0.1905 | 0.54 | 570 | 0.3354 | 0.9243 |
127
+ | 0.147 | 0.55 | 580 | 0.3431 | 0.9278 |
128
+ | 0.1538 | 0.56 | 590 | 0.3444 | 0.9232 |
129
+ | 0.1504 | 0.57 | 600 | 0.2196 | 0.9266 |
130
+ | 0.1628 | 0.58 | 610 | 0.3452 | 0.9163 |
131
+ | 0.1387 | 0.59 | 620 | 0.3282 | 0.9278 |
132
+ | 0.2104 | 0.6 | 630 | 0.2132 | 0.9243 |
133
+ | 0.1482 | 0.61 | 640 | 0.2154 | 0.9243 |
134
+ | 0.217 | 0.62 | 650 | 0.3472 | 0.9197 |
135
+ | 0.1692 | 0.63 | 660 | 0.2063 | 0.9243 |
136
+ | 0.175 | 0.64 | 670 | 0.2019 | 0.9278 |
137
+ | 0.1473 | 0.65 | 680 | 0.1957 | 0.9266 |
138
+ | 0.1154 | 0.66 | 690 | 0.2020 | 0.9255 |
139
+ | 0.1369 | 0.67 | 700 | 0.2087 | 0.9266 |
140
+ | 0.1262 | 0.67 | 710 | 0.3224 | 0.9289 |
141
+ | 0.2111 | 0.68 | 720 | 0.3325 | 0.9243 |
142
+ | 0.1349 | 0.69 | 730 | 0.3285 | 0.9289 |
143
+ | 0.1814 | 0.7 | 740 | 0.3324 | 0.9266 |
144
+ | 0.1217 | 0.71 | 750 | 0.3212 | 0.9243 |
145
+ | 0.173 | 0.72 | 760 | 0.2176 | 0.9220 |
146
+ | 0.1441 | 0.73 | 770 | 0.2130 | 0.9232 |
147
+ | 0.1706 | 0.74 | 780 | 0.2136 | 0.9220 |
148
+ | 0.1411 | 0.75 | 790 | 0.2101 | 0.9220 |
149
+ | 0.1051 | 0.76 | 800 | 0.2078 | 0.9243 |
150
+ | 0.115 | 0.77 | 810 | 0.2160 | 0.9266 |
151
+ | 0.2031 | 0.78 | 820 | 0.2162 | 0.9209 |
152
+ | 0.12 | 0.79 | 830 | 0.2059 | 0.9255 |
153
+ | 0.176 | 0.8 | 840 | 0.2100 | 0.9255 |
154
+ | 0.1306 | 0.81 | 850 | 0.4307 | 0.9243 |
155
+ | 0.1359 | 0.82 | 860 | 0.4397 | 0.9289 |
156
+ | 0.1921 | 0.83 | 870 | 0.5446 | 0.9278 |
157
+ | 0.1772 | 0.84 | 880 | 0.5423 | 0.9266 |
158
+ | 0.1771 | 0.85 | 890 | 0.4273 | 0.9266 |
159
+ | 0.1965 | 0.86 | 900 | 0.3224 | 0.9243 |
160
+ | 0.1227 | 0.86 | 910 | 0.2131 | 0.9278 |
161
+ | 0.2046 | 0.87 | 920 | 0.3130 | 0.9278 |
162
+ | 0.1061 | 0.88 | 930 | 0.3180 | 0.9289 |
163
+ | 0.1364 | 0.89 | 940 | 0.5501 | 0.9186 |
164
+ | 0.1213 | 0.9 | 950 | 0.4400 | 0.9220 |
165
+ | 0.1611 | 0.91 | 960 | 0.4364 | 0.9255 |
166
+ | 0.1632 | 0.92 | 970 | 0.4475 | 0.9220 |
167
+ | 0.1617 | 0.93 | 980 | 0.5758 | 0.9209 |
168
+ | 0.1478 | 0.94 | 990 | 0.2143 | 0.9220 |
169
+ | 0.1314 | 0.95 | 1000 | 0.2156 | 0.9232 |
170
+ | 0.1814 | 0.96 | 1010 | 0.2191 | 0.9220 |
171
+ | 0.1669 | 0.97 | 1020 | 0.2129 | 0.9243 |
172
+ | 0.1206 | 0.98 | 1030 | 0.2119 | 0.9220 |
173
+ | 0.1852 | 0.99 | 1040 | 0.2104 | 0.9209 |
174
+ | 0.1381 | 1.0 | 1050 | 0.1999 | 0.9255 |
175
+ | 0.135 | 1.01 | 1060 | 0.2090 | 0.9243 |
176
+ | 0.1253 | 1.02 | 1070 | 0.4486 | 0.9209 |
177
+ | 0.1244 | 1.03 | 1080 | 0.4319 | 0.9197 |
178
+ | 0.1772 | 1.04 | 1090 | 0.4248 | 0.9243 |
179
+ | 0.1264 | 1.05 | 1100 | 0.3090 | 0.9289 |
180
+ | 0.6928 | 1.05 | 1110 | 0.3174 | 0.9278 |
181
+ | 0.0908 | 1.06 | 1120 | 0.4359 | 0.9266 |
182
+ | 0.1286 | 1.07 | 1130 | 0.4302 | 0.9312 |
183
+ | 0.0953 | 1.08 | 1140 | 0.5397 | 0.9289 |
184
+ | 0.1091 | 1.09 | 1150 | 0.5455 | 0.9255 |
185
+ | 0.1546 | 1.1 | 1160 | 0.4261 | 0.9300 |
186
 
187
 
188
  ### Framework versions
189
 
190
+ - Transformers 4.34.0
191
  - Pytorch 2.0.1+cu118
192
  - Datasets 2.14.5
193
+ - Tokenizers 0.14.1