End of training
Browse files
README.md
ADDED
@@ -0,0 +1,140 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: t5-base
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- glue
|
8 |
+
metrics:
|
9 |
+
- accuracy
|
10 |
+
model-index:
|
11 |
+
- name: t5-base_sst2_dense
|
12 |
+
results:
|
13 |
+
- task:
|
14 |
+
name: Text Classification
|
15 |
+
type: text-classification
|
16 |
+
dataset:
|
17 |
+
name: glue
|
18 |
+
type: glue
|
19 |
+
config: sst2
|
20 |
+
split: validation
|
21 |
+
args: sst2
|
22 |
+
metrics:
|
23 |
+
- name: Accuracy
|
24 |
+
type: accuracy
|
25 |
+
value: 0.9243119266055045
|
26 |
+
---
|
27 |
+
|
28 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
29 |
+
should probably proofread and complete it, then remove this comment. -->
|
30 |
+
|
31 |
+
# t5-base_sst2_dense
|
32 |
+
|
33 |
+
This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the glue dataset.
|
34 |
+
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 0.3118
|
36 |
+
- Accuracy: 0.9243
|
37 |
+
|
38 |
+
## Model description
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Intended uses & limitations
|
43 |
+
|
44 |
+
More information needed
|
45 |
+
|
46 |
+
## Training and evaluation data
|
47 |
+
|
48 |
+
More information needed
|
49 |
+
|
50 |
+
## Training procedure
|
51 |
+
|
52 |
+
### Training hyperparameters
|
53 |
+
|
54 |
+
The following hyperparameters were used during training:
|
55 |
+
- learning_rate: 5e-05
|
56 |
+
- train_batch_size: 32
|
57 |
+
- eval_batch_size: 64
|
58 |
+
- seed: 42
|
59 |
+
- distributed_type: multi-GPU
|
60 |
+
- gradient_accumulation_steps: 2
|
61 |
+
- total_train_batch_size: 64
|
62 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
63 |
+
- lr_scheduler_type: linear
|
64 |
+
- lr_scheduler_warmup_steps: 200
|
65 |
+
- num_epochs: 5
|
66 |
+
|
67 |
+
### Training results
|
68 |
+
|
69 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
70 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
71 |
+
| 0.7121 | 0.01 | 10 | 0.6973 | 0.4989 |
|
72 |
+
| 0.6719 | 0.02 | 20 | 0.6858 | 0.5092 |
|
73 |
+
| 0.6727 | 0.03 | 30 | 0.6851 | 0.5092 |
|
74 |
+
| 0.6621 | 0.04 | 40 | 0.6685 | 0.5092 |
|
75 |
+
| 0.6359 | 0.05 | 50 | 0.6438 | 0.5975 |
|
76 |
+
| 0.6219 | 0.06 | 60 | 0.6044 | 0.8280 |
|
77 |
+
| 0.5648 | 0.07 | 70 | 0.5312 | 0.8452 |
|
78 |
+
| 0.4609 | 0.08 | 80 | 0.4129 | 0.8899 |
|
79 |
+
| 0.3486 | 0.09 | 90 | 0.3354 | 0.8842 |
|
80 |
+
| 0.291 | 0.1 | 100 | 0.2685 | 0.9106 |
|
81 |
+
| 0.28 | 0.1 | 110 | 0.2745 | 0.9014 |
|
82 |
+
| 0.2078 | 0.11 | 120 | 0.2994 | 0.9025 |
|
83 |
+
| 0.229 | 0.12 | 130 | 0.3541 | 0.8899 |
|
84 |
+
| 0.3003 | 0.13 | 140 | 0.2503 | 0.9106 |
|
85 |
+
| 0.1828 | 0.14 | 150 | 0.2430 | 0.9140 |
|
86 |
+
| 0.1957 | 0.15 | 160 | 0.2335 | 0.9140 |
|
87 |
+
| 0.2385 | 0.16 | 170 | 0.2552 | 0.9094 |
|
88 |
+
| 0.1792 | 0.17 | 180 | 0.2527 | 0.9174 |
|
89 |
+
| 0.2147 | 0.18 | 190 | 0.2657 | 0.9128 |
|
90 |
+
| 0.23 | 0.19 | 200 | 0.2290 | 0.9151 |
|
91 |
+
| 0.2376 | 0.2 | 210 | 0.2495 | 0.9209 |
|
92 |
+
| 0.2331 | 0.21 | 220 | 0.2370 | 0.9243 |
|
93 |
+
| 0.215 | 0.22 | 230 | 0.2258 | 0.9209 |
|
94 |
+
| 0.1833 | 0.23 | 240 | 0.2225 | 0.9209 |
|
95 |
+
| 0.2277 | 0.24 | 250 | 0.2202 | 0.9232 |
|
96 |
+
| 0.1969 | 0.25 | 260 | 0.2164 | 0.9209 |
|
97 |
+
| 0.2038 | 0.26 | 270 | 0.2147 | 0.9220 |
|
98 |
+
| 0.1421 | 0.27 | 280 | 0.2172 | 0.9186 |
|
99 |
+
| 0.1604 | 0.28 | 290 | 0.2408 | 0.9209 |
|
100 |
+
| 0.1864 | 0.29 | 300 | 0.2336 | 0.9220 |
|
101 |
+
| 0.1629 | 0.29 | 310 | 0.2293 | 0.9255 |
|
102 |
+
| 0.2334 | 0.3 | 320 | 0.2201 | 0.9243 |
|
103 |
+
| 0.1676 | 0.31 | 330 | 0.2108 | 0.9255 |
|
104 |
+
| 0.1672 | 0.32 | 340 | 0.2233 | 0.9209 |
|
105 |
+
| 0.1886 | 0.33 | 350 | 0.2229 | 0.9220 |
|
106 |
+
| 0.2081 | 0.34 | 360 | 0.2227 | 0.9209 |
|
107 |
+
| 0.2145 | 0.35 | 370 | 0.2185 | 0.9243 |
|
108 |
+
| 0.1322 | 0.36 | 380 | 0.2286 | 0.9209 |
|
109 |
+
| 0.2552 | 0.37 | 390 | 0.2193 | 0.9232 |
|
110 |
+
| 0.1542 | 0.38 | 400 | 0.2234 | 0.9232 |
|
111 |
+
| 0.2285 | 0.39 | 410 | 0.2190 | 0.9232 |
|
112 |
+
| 0.1633 | 0.4 | 420 | 0.2256 | 0.9255 |
|
113 |
+
| 0.1592 | 0.41 | 430 | 0.2386 | 0.9220 |
|
114 |
+
| 0.1525 | 0.42 | 440 | 0.2369 | 0.9255 |
|
115 |
+
| 0.2523 | 0.43 | 450 | 0.3649 | 0.9220 |
|
116 |
+
| 0.1938 | 0.44 | 460 | 0.2203 | 0.9255 |
|
117 |
+
| 0.1894 | 0.45 | 470 | 0.2067 | 0.9278 |
|
118 |
+
| 0.143 | 0.46 | 480 | 0.2143 | 0.9266 |
|
119 |
+
| 0.179 | 0.47 | 490 | 0.2090 | 0.9300 |
|
120 |
+
| 0.1589 | 0.48 | 500 | 0.2288 | 0.9255 |
|
121 |
+
| 0.1267 | 0.48 | 510 | 0.2129 | 0.9255 |
|
122 |
+
| 0.1822 | 0.49 | 520 | 0.2193 | 0.9255 |
|
123 |
+
| 0.172 | 0.5 | 530 | 0.3245 | 0.9220 |
|
124 |
+
| 0.1268 | 0.51 | 540 | 0.3119 | 0.9300 |
|
125 |
+
| 0.1243 | 0.52 | 550 | 0.3271 | 0.9255 |
|
126 |
+
| 0.141 | 0.53 | 560 | 0.3441 | 0.9220 |
|
127 |
+
| 0.1907 | 0.54 | 570 | 0.3205 | 0.9278 |
|
128 |
+
| 0.1688 | 0.55 | 580 | 0.3240 | 0.9243 |
|
129 |
+
| 0.1602 | 0.56 | 590 | 0.3146 | 0.9243 |
|
130 |
+
| 0.1292 | 0.57 | 600 | 0.3043 | 0.9289 |
|
131 |
+
| 0.1588 | 0.58 | 610 | 0.3345 | 0.9209 |
|
132 |
+
| 0.1381 | 0.59 | 620 | 0.3118 | 0.9243 |
|
133 |
+
|
134 |
+
|
135 |
+
### Framework versions
|
136 |
+
|
137 |
+
- Transformers 4.33.3
|
138 |
+
- Pytorch 2.0.1+cu118
|
139 |
+
- Datasets 2.14.5
|
140 |
+
- Tokenizers 0.13.3
|