--- license: apache-2.0 base_model: t5-base tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: t5-base_sst2_dense results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: sst2 split: validation args: sst2 metrics: - name: Accuracy type: accuracy value: 0.9243119266055045 --- # t5-base_sst2_dense This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.3118 - Accuracy: 0.9243 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7121 | 0.01 | 10 | 0.6973 | 0.4989 | | 0.6719 | 0.02 | 20 | 0.6858 | 0.5092 | | 0.6727 | 0.03 | 30 | 0.6851 | 0.5092 | | 0.6621 | 0.04 | 40 | 0.6685 | 0.5092 | | 0.6359 | 0.05 | 50 | 0.6438 | 0.5975 | | 0.6219 | 0.06 | 60 | 0.6044 | 0.8280 | | 0.5648 | 0.07 | 70 | 0.5312 | 0.8452 | | 0.4609 | 0.08 | 80 | 0.4129 | 0.8899 | | 0.3486 | 0.09 | 90 | 0.3354 | 0.8842 | | 0.291 | 0.1 | 100 | 0.2685 | 0.9106 | | 0.28 | 0.1 | 110 | 0.2745 | 0.9014 | | 0.2078 | 0.11 | 120 | 0.2994 | 0.9025 | | 0.229 | 0.12 | 130 | 0.3541 | 0.8899 | | 0.3003 | 0.13 | 140 | 0.2503 | 0.9106 | | 0.1828 | 0.14 | 150 | 0.2430 | 0.9140 | | 0.1957 | 0.15 | 160 | 0.2335 | 0.9140 | | 0.2385 | 0.16 | 170 | 0.2552 | 0.9094 | | 0.1792 | 0.17 | 180 | 0.2527 | 0.9174 | | 0.2147 | 0.18 | 190 | 0.2657 | 0.9128 | | 0.23 | 0.19 | 200 | 0.2290 | 0.9151 | | 0.2376 | 0.2 | 210 | 0.2495 | 0.9209 | | 0.2331 | 0.21 | 220 | 0.2370 | 0.9243 | | 0.215 | 0.22 | 230 | 0.2258 | 0.9209 | | 0.1833 | 0.23 | 240 | 0.2225 | 0.9209 | | 0.2277 | 0.24 | 250 | 0.2202 | 0.9232 | | 0.1969 | 0.25 | 260 | 0.2164 | 0.9209 | | 0.2038 | 0.26 | 270 | 0.2147 | 0.9220 | | 0.1421 | 0.27 | 280 | 0.2172 | 0.9186 | | 0.1604 | 0.28 | 290 | 0.2408 | 0.9209 | | 0.1864 | 0.29 | 300 | 0.2336 | 0.9220 | | 0.1629 | 0.29 | 310 | 0.2293 | 0.9255 | | 0.2334 | 0.3 | 320 | 0.2201 | 0.9243 | | 0.1676 | 0.31 | 330 | 0.2108 | 0.9255 | | 0.1672 | 0.32 | 340 | 0.2233 | 0.9209 | | 0.1886 | 0.33 | 350 | 0.2229 | 0.9220 | | 0.2081 | 0.34 | 360 | 0.2227 | 0.9209 | | 0.2145 | 0.35 | 370 | 0.2185 | 0.9243 | | 0.1322 | 0.36 | 380 | 0.2286 | 0.9209 | | 0.2552 | 0.37 | 390 | 0.2193 | 0.9232 | | 0.1542 | 0.38 | 400 | 0.2234 | 0.9232 | | 0.2285 | 0.39 | 410 | 0.2190 | 0.9232 | | 0.1633 | 0.4 | 420 | 0.2256 | 0.9255 | | 0.1592 | 0.41 | 430 | 0.2386 | 0.9220 | | 0.1525 | 0.42 | 440 | 0.2369 | 0.9255 | | 0.2523 | 0.43 | 450 | 0.3649 | 0.9220 | | 0.1938 | 0.44 | 460 | 0.2203 | 0.9255 | | 0.1894 | 0.45 | 470 | 0.2067 | 0.9278 | | 0.143 | 0.46 | 480 | 0.2143 | 0.9266 | | 0.179 | 0.47 | 490 | 0.2090 | 0.9300 | | 0.1589 | 0.48 | 500 | 0.2288 | 0.9255 | | 0.1267 | 0.48 | 510 | 0.2129 | 0.9255 | | 0.1822 | 0.49 | 520 | 0.2193 | 0.9255 | | 0.172 | 0.5 | 530 | 0.3245 | 0.9220 | | 0.1268 | 0.51 | 540 | 0.3119 | 0.9300 | | 0.1243 | 0.52 | 550 | 0.3271 | 0.9255 | | 0.141 | 0.53 | 560 | 0.3441 | 0.9220 | | 0.1907 | 0.54 | 570 | 0.3205 | 0.9278 | | 0.1688 | 0.55 | 580 | 0.3240 | 0.9243 | | 0.1602 | 0.56 | 590 | 0.3146 | 0.9243 | | 0.1292 | 0.57 | 600 | 0.3043 | 0.9289 | | 0.1588 | 0.58 | 610 | 0.3345 | 0.9209 | | 0.1381 | 0.59 | 620 | 0.3118 | 0.9243 | ### Framework versions - Transformers 4.33.3 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3