File size: 6,530 Bytes
6fecfbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
from functools import lru_cache
import json
import os

import folder_paths
from folder_paths import folder_names_and_paths, supported_pt_extensions
import nodes
import spacy
import torch


def update_paths():
        model_path = folder_paths.models_dir
        folder_names_and_paths["vyro_configs"] = ([os.path.join(os.path.dirname(os.path.abspath(__file__)), "../configs")], ['.json'])
        folder_names_and_paths["spacy"] = ([(os.path.join(model_path, "spacy"))], supported_pt_extensions)
        folder_names_and_paths["interposers"] = ([(os.path.join(model_path, "interposers"))], supported_pt_extensions)

update_paths()

class VyroConfigLoader:
    def __init__(self):
        pass
    
    @classmethod
    def INPUT_TYPES(s):   
        paths = []
        update_paths()
        for search_path in folder_paths.get_folder_paths("spacy"):
            if os.path.exists(search_path):
                for root, subdir, files in os.walk(search_path, followlinks=True):
                    if "config.cfg" in files:
                        paths.append(os.path.relpath(root, start=search_path))
        return {
            "required": {
                "config_path": (folder_paths.get_filename_list("vyro_configs"),),
                "classifier_path": (paths,),
            }
        }
    
    RETURN_TYPES = ("LIST","DICT","DICT","TRANSFORMER","LIST")
    RETURN_NAMES = ("styles","prompt_tree","model_config","classifier","unweighted_styles")
    FUNCTION = "load_config"
    CATEGORY = "Vyro/Loaders"
    
    def load_config(self, config_path, classifier_path):
        config_path = folder_paths.get_full_path("vyro_configs", config_path)
        classifier_path = os.path.join(folder_names_and_paths["spacy"][0][0],classifier_path)
        # classifier = pipeline("zero-shot-classification", model=classifier_path,device='cuda:0',local_files_only=True,use_safetensors=True)
        spacy.prefer_gpu(gpu_id=0)
        classifier = spacy.load(classifier_path)
        # classifier = pipeline("zero-shot-classification", model=classifier_path, config=f'{classifier_path}.json', device=0)
        with open(config_path, 'r') as json_file:
            try:
                config = json.load(json_file)
            except json.JSONDecodeError as json_e:
                print(f"[VyroConfigLoader] Error loading {config_path}:", json_e)
                return None
            unweighted_styles = []
            for style in config['styles']:
                if ':' in style:
                    style = style.split(':')[0]
                unweighted_styles.append(style)
            return (config['styles'], config['prompt_tree'], config['model_config'], classifier, unweighted_styles)



class VyroModelLoader:
    def __init__(self):
        self.chkp_loader = nodes.CheckpointLoaderSimple()
        self.lora_loader = nodes.LoraLoader()
        self.tree = None
        self.config = None
        
    @lru_cache(maxsize=6)
    def get_model(self, cfg):
        base = self.config['configs'][cfg]['base']
        refiner = self.config['configs'][cfg]['refiner']
        loras = self.config['configs'][cfg]['loras']
        tonemap_multiplier = self.config['configs'][cfg]['tonemap']
        base_model, base_clip, _ = self.chkp_loader.load_checkpoint(base)
        refiner_model, refiner_clip, _ = self.chkp_loader.load_checkpoint(refiner)
        for lora in loras:
            base_model, base_clip = self.lora_loader.load_lora(base_model, base_clip, lora['name'], lora['unet'], lora['clip'])
            
        def sampler_tonemap_reinhard(args):
            cond = args["cond"]
            uncond = args["uncond"]
            cond_scale = args["cond_scale"]
            noise_pred = (cond - uncond)
            noise_pred_vector_magnitude = (torch.linalg.vector_norm(noise_pred, dim=(1)) + 0.0000000001)[:,None]
            noise_pred /= noise_pred_vector_magnitude

            mean = torch.mean(noise_pred_vector_magnitude, dim=(1,2,3), keepdim=True)
            std = torch.std(noise_pred_vector_magnitude, dim=(1,2,3), keepdim=True)

            top = (std * 3 + mean) * tonemap_multiplier

            #reinhard
            noise_pred_vector_magnitude *= (1.0 / top)
            new_magnitude = noise_pred_vector_magnitude / (noise_pred_vector_magnitude + 1.0)
            new_magnitude *= top

            return uncond + noise_pred * new_magnitude * cond_scale

        base_model = base_model.clone()
        base_model.set_model_sampler_cfg_function(sampler_tonemap_reinhard)
        refiner_model = refiner_model.clone()
        refiner_model.set_model_sampler_cfg_function(sampler_tonemap_reinhard)
        
        return (base_model, refiner_model, base_clip, refiner_clip)
        
        
    @classmethod
    def INPUT_TYPES(s):   
        return {
            "required": {
                "style": ("STYLE",),
                "prompt_tree": ("DICT",),
                "model_config": ("DICT",),
            }
        }
    
    RETURN_TYPES = ("MODEL","MODEL","CLIP","CLIP")
    RETURN_NAMES = ("base_model","refiner_model","base_clip","refiner_clip")
    FUNCTION = "load"
    CATEGORY = "Vyro/Loaders"
    
    def load(self, style, prompt_tree, model_config):
        if prompt_tree is None:
            raise ValueError("Prompt tree is None")

        if style is None or style == "qr":
            print("⛔ Style is qr changing to default qr models")
            self.tree = prompt_tree
            self.config = model_config
            cfg = 'default_qr'
            return self.get_model(cfg)
            #raise ValueError("Style is None")


        if style is None or style == "":
            print("⛔ Style is none using Default config")
            self.tree = prompt_tree
            self.config = model_config
            cfg = 'default'
            return self.get_model(cfg)
            #raise ValueError("Style is None")
        
        if style not in prompt_tree.keys():
            raise ValueError("Style not in prompt tree")
        
        node = prompt_tree[style]
        if 'model_config' not in node:
            cfg = 'default'
        else:
            cfg = node['model_config']
            
        self.tree = prompt_tree
        self.config = model_config
        
        return self.get_model(cfg)
    
        

NODE_CLASS_MAPPINGS = {
    "Vyro Config Loader": VyroConfigLoader,
    "Vyro Model Loader": VyroModelLoader,
}
NODE_DISPLAY_NAME_MAPPINGS = {
    "VyroConfigLoader": "Vyro Config Loader",
    "VyroModelLoader": "Vyro Model Loader",
}