File size: 9,185 Bytes
6fecfbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
import re
import time

from colorama import Fore, Style

import spacy

from ..utils import VyroParams
from ..utils.prompt import calc_prompt

class VyroPromptAnalyzer:
    def __init__(self):
        pass
    
    @classmethod
    def INPUT_TYPES(s):
        

        return {
            "required": {
                "vyro_params": ("VYRO_PARAMS",),
                "styles": ("LIST",),
                "prompt_tree": ("DICT",),
                "classifier": ("TRANSFORMER",),
                "debug": (VyroParams.STATES, {"default": VyroParams.STATES[0]}),
                "skip": (VyroParams.STATES, {"default": VyroParams.STATES[0]})
            }
        }
        
    RETURN_TYPES = ("VYRO_PARAMS", "STYLE",)
    RETURN_NAMES = ("vyro_params", "style", )
    
    FUNCTION = "analyze_prompt"
    
    CATEGORY = "Vyro/Prompt"
    
    def analyze_prompt(self, vyro_params:VyroParams, styles:list, prompt_tree:dict, classifier:spacy.language.Language, debug,skip):
        
        user_prompt = vyro_params.user_prompt
        if '--raw' in user_prompt.lower() or skip == VyroParams.STATES[1]:
            user_prompt = user_prompt.lower().replace('--raw', '')
            vyro_params.is_raw = True
            vyro_params.user_prompt = user_prompt
                        
        classifier_target = user_prompt

        if vyro_params.is_raw==True:
            vyro_params.user_prompt = user_prompt
            vyro_params.final_positive_prompt = vyro_params.user_prompt
            vyro_params.final_negative_prompt = vyro_params.user_neg_prompt
            
            #Check if its in qrcode mode, this way we can skip prompt analyze
            if  vyro_params.mode =="qr":
                vyro_params.style = "qr"
                return (vyro_params, "qr", )
            
            vyro_params.style = "" 
            return (vyro_params, "", )
        

        if '--style:' in user_prompt.lower():
            # Extract style from prompt
            # Style is in the format of --style:style_name or --style:"style name"
            
            style_r = r'\-\-style\:(\"[a-zA-Z0-9\s]+\"|[a-zA-Z0-9_]+)'
            extracted_style = re.findall(style_r, user_prompt)
            if len(extracted_style) > 0:
                extracted_style = extracted_style[0]
                if extracted_style.startswith('"'):
                    extracted_style = extracted_style[1:-1]
                    
                
                user_prompt = re.sub(style_r, '', user_prompt)
            else:
                user_prompt = user_prompt.replace('--style:', '')
            vyro_params.user_prompt = user_prompt
            classifier_target = extracted_style
            
        if classifier_target in styles:
            vyro_params.style = classifier_target
            calc_prompt(vyro_params, prompt_tree)
            return (vyro_params, classifier_target, )
        
        deweighted_styles = []
        weights = []
        for style in styles:
            if ':' in style:
                weight = style.split(':')[1]
                style = style.split(':')[0]
                if not isinstance(weight, float):
                    weight = float(weight)
            else:
                weight = 1.0
            deweighted_styles.append(style)
            weights.append(weight)
            
        
        # classifier.model.to(0)
        # classifier.device = torch.device('cuda:0')
        t1 = time.time()
        doc = classifier(classifier_target)
        top_label = sorted(doc.cats.items(), key=lambda x: x[1], reverse=True)[:1]
        top_label = top_label[0][0].replace('_', ' ')
        t2 = time.time()
        scores = []
        labels = []
        
        for i in range(len(deweighted_styles)):
            style = deweighted_styles[i].replace(' ', '_')
            if style in doc.cats.keys():
                score = doc.cats[style] * weights[i]
                scores.append(score)
                labels.append(deweighted_styles[i])
                
            
            
        
        zipped = zip(scores, labels)
        weighted_scores = []
        #apply weights to scores
        for i, (score, label) in enumerate(zipped):
            style = label
            idx = deweighted_styles.index(style)
            weight = weights[idx]
            weighted_scores.append((label, score * weight, weight))
            
        weighted_scores.sort(key=lambda x: x[1], reverse=True)
        top_x = 3 if len(weighted_scores) > 3 else len(weighted_scores)
        top3 = weighted_scores[:top_x]
        
        if debug == VyroParams.STATES[1]:
            print(f"[PromptAnalyzer] {Fore.LIGHTYELLOW_EX}Prompt analysis took {round(t2-t1,2)} seconds.{Style.RESET_ALL}")
            for i in range(len(top3)):
                if i == 0:
                    print(f"[PromptAnalyzer] {top3[i][0]}: {Fore.RED}{round(top3[i][1],2)} {Fore.LIGHTRED_EX}({top3[i][2]}){Style.RESET_ALL}")
                else:
                    print(f"[PromptAnalyzer] {top3[i][0]}: {Fore.LIGHTBLUE_EX}{round(top3[i][1],2)} {Fore.LIGHTGREEN_EX}({top3[i][2]}){Style.RESET_ALL}")
        style = top3[0][0]
        # classifier.model.to('cpu')
        # classifier.device = torch.device('cpu')
        vyro_params.style = style
        calc_prompt(vyro_params, prompt_tree)
        
        return (vyro_params, style, )
    
    

class VyroPromptEncoder:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {
                    "base_clip": ("CLIP", ),
                    "refiner_clip": ("CLIP", ),
                    "params": ("VYRO_PARAMS",),
                    "crop_factor": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01}),
                    },
                }

    RETURN_TYPES = ("CONDITIONING", "CONDITIONING", "CONDITIONING", "CONDITIONING", )
    RETURN_NAMES = ("base_positive", "base_negative", "refiner_positive", "refiner_negative", )
    FUNCTION = "encode"

    CATEGORY = "Vyro/Prompt"

    def encode(self, base_clip, refiner_clip, params:VyroParams, crop_factor:float):
        empty = base_clip.tokenize("")
        
        print(f'[VyroPromptEncoder] {Fore.LIGHTYELLOW_EX}Base positive prompt: {params.final_positive_prompt}{Style.RESET_ALL}')
        print(f'[VyroPromptEncoder] {Fore.LIGHTYELLOW_EX}Base negative prompt: {params.final_negative_prompt}{Style.RESET_ALL}')
        pos_r = pos_g = params.final_positive_prompt
        neg_r = neg_g = params.final_negative_prompt
        pos_l = params.final_positive_prompt
        neg_l = params.final_positive_prompt
        base_width = params.width
        base_height = params.height
        crop_w = int(params.width * crop_factor)
        crop_h = int(params.height * crop_factor)
        target_width = params.width * 4
        target_height = params.height * 4
        pos_ascore = 6.0
        neg_ascore = 1.0
        refiner_width = params.width
        refiner_height = params.height
        
        # positive base prompt
        tokens1 = base_clip.tokenize(pos_g)
        tokens1["l"] = base_clip.tokenize(pos_l)["l"]

        if len(tokens1["l"]) != len(tokens1["g"]):
            while len(tokens1["l"]) < len(tokens1["g"]):
                tokens1["l"] += empty["l"]
            while len(tokens1["l"]) > len(tokens1["g"]):
                tokens1["g"] += empty["g"]

        cond1, pooled1 = base_clip.encode_from_tokens(tokens1, return_pooled=True)
        res1 = [[cond1, {"pooled_output": pooled1, "width": base_width, "height": base_height, "crop_w": crop_w, "crop_h": crop_h, "target_width": target_width, "target_height": target_height}]]

        # negative base prompt
        tokens2 = base_clip.tokenize(neg_g)
        tokens2["l"] = base_clip.tokenize(neg_l)["l"]

        if len(tokens2["l"]) != len(tokens2["g"]):
            while len(tokens2["l"]) < len(tokens2["g"]):
                tokens2["l"] += empty["l"]
            while len(tokens2["l"]) > len(tokens2["g"]):
                tokens2["g"] += empty["g"]

        cond2, pooled2 = base_clip.encode_from_tokens(tokens2, return_pooled=True)
        res2 = [[cond2, {"pooled_output": pooled2, "width": base_width, "height": base_height, "crop_w": crop_w, "crop_h": crop_h, "target_width": target_width, "target_height": target_height}]]


        # positive refiner prompt
        tokens3 = refiner_clip.tokenize(pos_r)
        cond3, pooled3 = refiner_clip.encode_from_tokens(tokens3, return_pooled=True)
        res3 = [[cond3, {"pooled_output": pooled3, "aesthetic_score": pos_ascore, "width": refiner_width, "height": refiner_height}]]

        # negative refiner prompt
        tokens4 = refiner_clip.tokenize(neg_r)
        cond4, pooled4 = refiner_clip.encode_from_tokens(tokens4, return_pooled=True)
        res4 = [[cond4, {"pooled_output": pooled4, "aesthetic_score": neg_ascore, "width": refiner_width, "height": refiner_height}]]

        return (res1, res2, res3, res4, )



NODE_CLASS_MAPPINGS = {
    "Vyro Prompt Analyzer": VyroPromptAnalyzer,
    "Vyro Prompt Encoder": VyroPromptEncoder,
}

NODE_DISPLAY_NAME_MAPPINGS = {
    "VyroPromptAnalyzer": "Vyro Prompt Analyzer",
    "VyroPromptEncoder": "Vyro Prompt Encoder",
}