File size: 8,022 Bytes
6fecfbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
from typing import Tuple

from PIL import Image, ImageOps

import numpy as np
import torch

# from ..utils.face_swap import pil2mask, pil2tensor, tensor2pil

def get_latent_size(LATENT, ORIGINAL_VALUES=False) -> Tuple[int, int]:
    lc = LATENT.copy()
    size = lc["samples"].shape[3], lc["samples"].shape[2]
    if ORIGINAL_VALUES == False:
        size = size[0] * 8, size[1] * 8
    return size

class GetLatentSize:
    def __init__(self) -> None:
        pass

    @classmethod
    def INPUT_TYPES(cls):
        return {
            "required": {
                "latent": ("LATENT",),
                "original": ([False, True],),
            }
        }

    RETURN_TYPES = ("INT", "INT", "TUPLE",)
    CATEGORY = 'Vyro/Utils'

    FUNCTION = 'get_size'

    def get_size(self, latent, original):
        size = get_latent_size(latent, original)
        return (size[0], size[1], size,)


class MultilineStringNode:
    def __init__(self):
        pass

    @classmethod
    def INPUT_TYPES(cls):
        return {
            "required": {
                "Text": ("STRING", {
                    "default": "",
                    "multiline": True,
                }),
            }
        }

    RETURN_TYPES = ("STRING",)
    FUNCTION = "get_value"
    CATEGORY = "Vyro/Utils"

    def get_value(self, Text):
        return (Text,)
    
class WAS_Images_To_RGB:
    def __init__(self):
        pass

    @classmethod
    def INPUT_TYPES(cls):
        return {
            "required": {
                "images": ("IMAGE",),
            },
        }

    RETURN_TYPES = ("IMAGE",)
    RETURN_NAMES = ("images",)
    FUNCTION = "images_to_rgb"

    CATEGORY = "Vyro/Image"

    def images_to_rgb(self, images):

        tensors = []
        for image in images:
            tensors.append(pil2tensor(tensor2pil(image).convert("RGB")))
        tensors = torch.cat(tensors, dim=0)

        return (tensors,)
        
def smooth_region(image, tolerance):
            from scipy.ndimage import gaussian_filter
            image = image.convert("L")
            mask_array = np.array(image)
            smoothed_array = gaussian_filter(mask_array, sigma=tolerance)
            threshold = np.max(smoothed_array) / 2
            smoothed_mask = np.where(smoothed_array >= threshold, 255, 0).astype(np.uint8)
            smoothed_image = Image.fromarray(smoothed_mask, mode="L")
            return ImageOps.invert(smoothed_image.convert("RGB"))   
       
class WAS_Mask_Smooth_Region:


    @classmethod
    def INPUT_TYPES(cls):
        return {
                    "required": {
                        "masks": ("MASK",),
                        "sigma": ("FLOAT", {"default":5.0, "min":0.0, "max":128.0, "step":0.1}),
                    }
                }

    CATEGORY = "Vyro/Image/Masking"

    RETURN_TYPES = ("MASK",)
    RETURN_NAMES = ("MASKS",)

    FUNCTION = "smooth"

    def smooth(self, masks, sigma=128):

        if masks is None:
            masks = torch.zeros((1, 1, 10, 10))  # Replace 10x10 with the desired dimensions
            masks[0, 0, 5, 5] = 1  # One white pixel at the center


        if masks.ndim > 3:
            regions = []
            for mask in masks:
                mask_np = np.clip(255. * mask.cpu().numpy().squeeze(), 0, 255).astype(np.uint8)
                pil_image = Image.fromarray(mask_np, mode="L")
                region_mask = self.WT.Masking.smooth_region(pil_image, sigma)
                region_tensor = pil2mask(region_mask).unsqueeze(0).unsqueeze(1)
                regions.append(region_tensor)
            regions_tensor = torch.cat(regions, dim=0)
            return (regions_tensor,)
        else:
            mask_np = np.clip(255. * masks.cpu().numpy().squeeze(), 0, 255).astype(np.uint8)
            pil_image = Image.fromarray(mask_np, mode="L")
            region_mask = smooth_region(pil_image, sigma)
            region_tensor = pil2mask(region_mask).unsqueeze(0).unsqueeze(1)
            return (region_tensor,)


class WAS_Latent_Upscale:
    def __init__(self):
        pass

    @classmethod
    def INPUT_TYPES(cls):
        return {"required": {"samples": ("LATENT",), "mode": (["area", "bicubic", "bilinear", "nearest"],),
                             "factor": ("FLOAT", {"default": 2.0, "min": 0.1, "max": 8.0, "step": 0.01}),
                             "align": (["true", "false"], )}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "latent_upscale"

    CATEGORY = "Vyro/Latent/Transform"

    def latent_upscale(self, samples, mode, factor, align):
        valid_modes = ["area", "bicubic", "bilinear", "nearest"]
        if mode not in valid_modes:
            print(f"Invalid interpolation mode `{mode}` selected. Valid modes are: {', '.join(valid_modes)}")
            return (s, )
        align = True if align == 'true' else False
        if not isinstance(factor, float) or factor <= 0:
            print(f"The input `factor` is `{factor}`, but should be a positive or negative float.")
            return (s, )
        s = samples.copy()
        shape = s['samples'].shape
        size = tuple(int(round(dim * factor)) for dim in shape[-2:])
        if mode in ['linear', 'bilinear', 'bicubic', 'trilinear']:
            s["samples"] = torch.nn.functional.interpolate(
                s['samples'], size=size, mode=mode, align_corners=align)
        else:
            s["samples"] = torch.nn.functional.interpolate(s['samples'], size=size, mode=mode)
        return (s,)

TEXT_TYPE = "STRING"

class WAS_Text_Concatenate:
    def __init__(self):
        pass

    @classmethod
    def INPUT_TYPES(cls):
        return {
            "required": {
                "text_a": (TEXT_TYPE, {"forceInput": (True if TEXT_TYPE == 'STRING' else False)}),
                "text_b": (TEXT_TYPE, {"forceInput": (True if TEXT_TYPE == 'STRING' else False)}),
                "linebreak_addition": (['false','true'], ),
            },
            "optional": {
                "text_c": (TEXT_TYPE, {"forceInput": (True if TEXT_TYPE == 'STRING' else False)}),
                "text_d": (TEXT_TYPE, {"forceInput": (True if TEXT_TYPE == 'STRING' else False)}),
            }
        }

    RETURN_TYPES = (TEXT_TYPE,)
    FUNCTION = "text_concatenate"

    CATEGORY = "Vyro/Text"

    def text_concatenate(self, text_a, text_b, text_c=None, text_d=None, linebreak_addition='false'):
        return_text = text_a + ("\n" if linebreak_addition == 'true' else '') + text_b
        if text_c:
            return_text = return_text + ("\n" if linebreak_addition == 'true' else '') + text_c
        if text_d:
            return_text = return_text + ("\n" if linebreak_addition == 'true' else '') + text_d
        return (return_text, )


class WAS_Image_Threshold:
    def __init__(self):
        pass

    @classmethod
    def INPUT_TYPES(cls):
        return {
            "required": {
                "image": ("IMAGE",),
                "threshold": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01}),
            },
        }

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "image_threshold"

    CATEGORY = "WAS Suite/Image/Process"

    def image_threshold(self, image, threshold=0.5):
        return (pil2tensor(self.apply_threshold(tensor2pil(image), threshold)), )

    def apply_threshold(self, input_image, threshold=0.5):
        # Convert the input image to grayscale
        grayscale_image = input_image.convert('L')

        # Apply the threshold to the grayscale image
        threshold_value = int(threshold * 255)
        thresholded_image = grayscale_image.point(
            lambda x: 255 if x >= threshold_value else 0, mode='L')

        return thresholded_image


  
NODE_CLASS_MAPPINGS = {
    "Get latent size": GetLatentSize,
    "Images to RGB": WAS_Images_To_RGB,
    "Mask Smooth Region": WAS_Mask_Smooth_Region,
    "Latent Upscale by Factor (WAS)": WAS_Latent_Upscale,
    "Text box": MultilineStringNode,
    "Text Concatenate": WAS_Text_Concatenate,
    "Image Threshold": WAS_Image_Threshold,
}