File size: 15,148 Bytes
6fecfbe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 |
import contextlib
import os
import comfy
import comfy.model_management
import comfy.utils
import folder_paths
from folder_paths import folder_names_and_paths
import torch
from torch import nn
import torch.nn.functional as F
import torchvision.transforms as TT
from ..utils.resampler import Resampler
model_path = folder_paths.models_dir
folder_names_and_paths["ipadapter"] = ([os.path.join(model_path, "ipadapter")], ['.bin'])
# attention_channels
SD_V12_CHANNELS = [320] * 4 + [640] * 4 + [1280] * 4 + [1280] * 6 + [640] * 6 + [320] * 6 + [1280] * 2
SD_XL_CHANNELS = [640] * 8 + [1280] * 40 + [1280] * 60 + [640] * 12 + [1280] * 20
def get_filename_list(path):
return [f for f in os.listdir(path) if f.endswith('.bin')]
class ImageProjModel(nn.Module):
def __init__(self, cross_attention_dim=1024, clip_embeddings_dim=1024, clip_extra_context_tokens=4):
super().__init__()
self.cross_attention_dim = cross_attention_dim
self.clip_extra_context_tokens = clip_extra_context_tokens
self.proj = nn.Linear(clip_embeddings_dim, self.clip_extra_context_tokens * cross_attention_dim)
self.norm = nn.LayerNorm(cross_attention_dim)
def forward(self, image_embeds):
embeds = image_embeds
clip_extra_context_tokens = self.proj(embeds).reshape(-1, self.clip_extra_context_tokens, self.cross_attention_dim)
clip_extra_context_tokens = self.norm(clip_extra_context_tokens)
return clip_extra_context_tokens
class To_KV(nn.Module):
def __init__(self, cross_attention_dim):
super().__init__()
channels = SD_XL_CHANNELS if cross_attention_dim == 2048 else SD_V12_CHANNELS
self.to_kvs = nn.ModuleList([nn.Linear(cross_attention_dim, channel, bias=False) for channel in channels])
def load_state_dict(self, state_dict):
for i, key in enumerate(state_dict.keys()):
self.to_kvs[i].weight.data = state_dict[key]
def set_model_patch_replace(model, patch_kwargs, key):
to = model.model_options["transformer_options"]
if "patches_replace" not in to:
to["patches_replace"] = {}
if "attn2" not in to["patches_replace"]:
to["patches_replace"]["attn2"] = {}
if key not in to["patches_replace"]["attn2"]:
patch = CrossAttentionPatch(**patch_kwargs)
to["patches_replace"]["attn2"][key] = patch
else:
to["patches_replace"]["attn2"][key].set_new_condition(**patch_kwargs)
def attention(q, k, v, extra_options):
if not hasattr(F, "multi_head_attention_forward"):
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=extra_options["n_heads"]), (q, k, v))
sim = torch.einsum('b i d, b j d -> b i j', q, k) * (extra_options["dim_head"] ** -0.5)
sim = F.softmax(sim, dim=-1)
out = torch.einsum('b i j, b j d -> b i d', sim, v)
out = rearrange(out, '(b h) n d -> b n (h d)', h=extra_options["n_heads"])
else:
b, _, _ = q.shape
q, k, v = map(
lambda t: t.view(b, -1, extra_options["n_heads"], extra_options["dim_head"]).transpose(1, 2),
(q, k, v),
)
out = F.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=0.0, is_causal=False)
out = out.transpose(1, 2).reshape(b, -1, extra_options["n_heads"] * extra_options["dim_head"])
return out
# TODO: still have to find the best way to add noise to the uncond image
def image_add_noise(image, noise):
image = image.permute([0,3,1,2])
torch.manual_seed(0) # use a fixed random for reproducible results
transforms = TT.Compose([
TT.CenterCrop(min(image.shape[2], image.shape[3])),
TT.Resize((224, 224), interpolation=TT.InterpolationMode.BICUBIC, antialias=True),
TT.ElasticTransform(alpha=75.0, sigma=noise*3.5), # shuffle the image
#TT.GaussianBlur(5, sigma=1.5), # by adding blur in the negative image we get sharper results
#TT.RandomSolarize(threshold=.75, p=1), # add color aberration to prevent sending the same colors in the negative image
TT.RandomVerticalFlip(p=1.0), # flip the image to change the geometry even more
TT.RandomHorizontalFlip(p=1.0),
])
image = transforms(image.cpu())
image = image.permute([0,2,3,1])
image = image + ((0.25*(1-noise)+0.05) * torch.randn_like(image) ) # add random noise
return image
def zeroed_hidden_states(clip_vision):
image = torch.zeros( [1, 3, 224, 224] )
inputs = clip_vision.processor(images=image, return_tensors="pt")
comfy.model_management.load_model_gpu(clip_vision.patcher)
pixel_values = torch.zeros_like(inputs['pixel_values']).to(clip_vision.load_device)
if clip_vision.dtype != torch.float32:
precision_scope = torch.autocast
else:
precision_scope = lambda a, b: contextlib.nullcontext(a)
with precision_scope(comfy.model_management.get_autocast_device(clip_vision.load_device), torch.float32):
outputs = clip_vision.model(pixel_values, output_hidden_states=True)
# we only need the penultimate hidden states
for k in outputs:
t = outputs[k]
if t is not None:
if k == 'hidden_states':
outputs["penultimate_hidden_states"] = t[-2].cpu()
return outputs["penultimate_hidden_states"]
class IPAdapter(nn.Module):
def __init__(self, ipadapter_model, cross_attention_dim=1024, clip_embeddings_dim=1024, clip_extra_context_tokens=4):
super().__init__()
self.clip_embeddings_dim = clip_embeddings_dim
self.cross_attention_dim = ipadapter_model["ip_adapter"]["1.to_k_ip.weight"].shape[1]
self.clip_extra_context_tokens = clip_extra_context_tokens
self.image_proj_model = self.init_proj()
self.image_proj_model.load_state_dict(ipadapter_model["image_proj"])
self.ip_layers = To_KV(cross_attention_dim)
self.ip_layers.load_state_dict(ipadapter_model["ip_adapter"])
def init_proj(self):
image_proj_model = ImageProjModel(
cross_attention_dim=self.cross_attention_dim,
clip_embeddings_dim=self.clip_embeddings_dim,
clip_extra_context_tokens=self.clip_extra_context_tokens
)
return image_proj_model
@torch.inference_mode()
def get_image_embeds(self, clip_embed, clip_embed_zeroed):
image_prompt_embeds = self.image_proj_model(clip_embed)
uncond_image_prompt_embeds = self.image_proj_model(clip_embed_zeroed)
return image_prompt_embeds, uncond_image_prompt_embeds
class IPAdapterPlus(IPAdapter):
def init_proj(self):
image_proj_model = Resampler(
dim=self.cross_attention_dim,
depth=4,
dim_head=64,
heads=12,
num_queries=self.clip_extra_context_tokens,
embedding_dim=self.clip_embeddings_dim,
output_dim=self.cross_attention_dim,
ff_mult=4
)
return image_proj_model
class CrossAttentionPatch:
# forward for patching
def __init__(self, weight, ipadapter, dtype, number, cond, uncond, mask=None):
self.weights = [weight]
self.ipadapters = [ipadapter]
self.conds = [cond]
self.unconds = [uncond]
self.dtype = dtype
self.number = number
self.masks = [mask]
def set_new_condition(self, weight, ipadapter, cond, uncond, dtype, number, mask=None):
self.weights.append(weight)
self.ipadapters.append(ipadapter)
self.conds.append(cond)
self.unconds.append(uncond)
self.masks.append(mask)
self.dtype = dtype
def __call__(self, n, context_attn2, value_attn2, extra_options):
org_dtype = n.dtype
with torch.autocast("cuda", dtype=self.dtype):
q = n
k = context_attn2
v = value_attn2
b, _, _ = q.shape
out = attention(q, k, v, extra_options)
for weight, cond, uncond, ipadapter, mask in zip(self.weights, self.conds, self.unconds, self.ipadapters, self.masks):
uncond_cond = torch.cat([uncond.repeat(b//2, 1, 1), cond.repeat(b//2, 1, 1)], dim=0)
# k, v for ip_adapter
ip_k = ipadapter.ip_layers.to_kvs[self.number*2](uncond_cond)
ip_v = ipadapter.ip_layers.to_kvs[self.number*2+1](uncond_cond)
ip_out = attention(q, ip_k, ip_v, extra_options)
out = out + ip_out * weight
return out.to(dtype=org_dtype)
class IPAdapterModelLoader:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"ipadapter_file": (folder_paths.get_filename_list("ipadapter"),),
}
}
RETURN_TYPES = ("IPADAPTER",)
FUNCTION = "load_ipadapter_model"
CATEGORY = "Vyro/IPAdapter"
def load_ipadapter_model(self, ipadapter_file):
ckpt_path = folder_paths.get_full_path("ipadapter", ipadapter_file)
model = comfy.utils.load_torch_file(ckpt_path, safe_load=True)
keys = model.keys()
if not "ip_adapter" in keys:
raise Exception("invalid IPAdapter model {}".format(ckpt_path))
return (model,)
class IPAdapterApply:
def __init__(self) -> None:
self.ipadapter = None
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"ipadapter": ("IPADAPTER", ),
"clip_vision": ("CLIP_VISION",),
"image": ("IMAGE",),
"model": ("MODEL", ),
"weight": ("FLOAT", { "default": 1.0, "min": -1, "max": 3, "step": 0.05 }),
"noise": ("FLOAT", { "default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01 }),
"weights_per_image": ("STRING", {"default": "1.0"}),
},
}
RETURN_TYPES = ("MODEL",)
FUNCTION = "apply_ipadapter"
CATEGORY = "Vyro/IPAdapter"
uncond_hidden_states = None
def apply_ipadapter(self, ipadapter, clip_vision, image, model, weight, noise, weights_per_image):
try:
self.dtype = model.model.diffusion_model.dtype
self.device = comfy.model_management.get_torch_device()
self.weight = weight
self.is_plus = "latents" in ipadapter["image_proj"]
cross_attention_dim = ipadapter["ip_adapter"]["1.to_k_ip.weight"].shape[1]
self.is_sdxl = cross_attention_dim == 2048
work_model = model.clone()
#split image into list of tensors
images = torch.split(image, 1, dim=0)
weights_per_image = [float(x) for x in weights_per_image.split(",")]
for i in range(len(images)):
image = images[i]
weight = weights_per_image[i]
clip_embed = clip_vision.encode_image(image)
neg_image = image_add_noise(image, noise) if noise > 0 else None
if self.is_plus:
clip_extra_context_tokens = 16
clip_embed = clip_embed.last_hidden_state
if noise > 0:
clip_embed_zeroed = clip_vision.encode_image(neg_image).last_hidden_state
else:
clip_embed_zeroed = zeroed_hidden_states(clip_vision)
else:
clip_extra_context_tokens = 4
clip_embed = clip_embed.image_embeds
if noise > 0:
clip_embed_zeroed = clip_vision.encode_image(neg_image).image_embeds
else:
clip_embed_zeroed = torch.zeros_like(clip_embed)
clip_embeddings_dim = clip_embed.shape[-1]
if self.ipadapter is None:
IPA = IPAdapterPlus if self.is_plus else IPAdapter
self.ipadapter = IPA(
ipadapter,
cross_attention_dim=cross_attention_dim,
clip_embeddings_dim=clip_embeddings_dim,
clip_extra_context_tokens=clip_extra_context_tokens
)
self.ipadapter.to(self.device, dtype=self.dtype)
image_prompt_embeds, uncond_image_prompt_embeds = self.ipadapter.get_image_embeds(clip_embed.to(self.device, self.dtype), clip_embed_zeroed.to(self.device, self.dtype))
image_prompt_embeds = image_prompt_embeds.to(self.device, dtype=self.dtype)
uncond_image_prompt_embeds = uncond_image_prompt_embeds.to(self.device, dtype=self.dtype)
patch_kwargs = {
"number": 0,
"weight": weight * self.weight,
"ipadapter": self.ipadapter,
"dtype": self.dtype,
"cond": image_prompt_embeds,
"uncond": uncond_image_prompt_embeds,
}
if not self.is_sdxl:
for id in [1,2,4,5,7,8]: # id of input_blocks that have cross attention
set_model_patch_replace(work_model, patch_kwargs, ("input", id))
patch_kwargs["number"] += 1
for id in [3,4,5,6,7,8,9,10,11]: # id of output_blocks that have cross attention
set_model_patch_replace(work_model, patch_kwargs, ("output", id))
patch_kwargs["number"] += 1
set_model_patch_replace(work_model, patch_kwargs, ("middle", 0))
else:
for id in [4,5,7,8]: # id of input_blocks that have cross attention
block_indices = range(2) if id in [4, 5] else range(10) # transformer_depth
for index in block_indices:
set_model_patch_replace(work_model, patch_kwargs, ("input", id, index))
patch_kwargs["number"] += 1
for id in range(6): # id of output_blocks that have cross attention
block_indices = range(2) if id in [3, 4, 5] else range(10) # transformer_depth
for index in block_indices:
set_model_patch_replace(work_model, patch_kwargs, ("output", id, index))
patch_kwargs["number"] += 1
for index in range(10):
set_model_patch_replace(work_model, patch_kwargs, ("midlle", 0, index))
patch_kwargs["number"] += 1
return (work_model, )
except Exception as e:
#trace stack
import traceback
print(f'[IPAdapterApply] {e}')
# traceback.print_exception(e)
return (model, )
NODE_CLASS_MAPPINGS = {
"IPAdapterModelLoader": IPAdapterModelLoader,
"IPAdapterApply": IPAdapterApply,
}
NODE_DISPLAY_NAME_MAPPINGS = {
"IPAdapterModelLoader": "Load IPAdapter Model",
"IPAdapterApply": "Apply IPAdapter",
}
|