File size: 21,777 Bytes
6fecfbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
from functools import lru_cache
import json
import os
# from turtle import speed

import folder_paths
from folder_paths import folder_names_and_paths, supported_pt_extensions
import nodes
import spacy
import torch

def update_paths():
        model_path = folder_paths.models_dir
        folder_names_and_paths["vyro_configs"] = ([os.path.join(os.path.dirname(os.path.abspath(__file__)), "../configs")], ['.json'])
        folder_names_and_paths["spacy"] = ([(os.path.join(model_path, "spacy"))], supported_pt_extensions)
        folder_names_and_paths["interposers"] = ([(os.path.join(model_path, "interposers"))], supported_pt_extensions)
        folder_names_and_paths['oneflow_graphs'] = ([(os.path.join(model_path, "oneflow_graphs"))], (""))
        
update_paths()

class VyroConfigLoader:
    def __init__(self):
        pass
    
    @classmethod
    def INPUT_TYPES(s):   
        
        paths = []
        update_paths()
        spacy_paths = folder_paths.get_folder_paths("spacy")
        print(f"[VyroConfigLoader] spacy paths: {spacy_paths}")  # Debug print

        for search_path in spacy_paths:
            if os.path.exists(search_path):
                print(f"[VyroConfigLoader] Found spacy path: {search_path}") # Debug print
                for root, subdir, files in os.walk(search_path, followlinks=True):
                    if "config.cfg" in files:
                        rel_path = os.path.relpath(root, start=search_path)
                        paths.append(rel_path)
                        print(f"[VyroConfigLoader] Added classifier path: {rel_path}") # Debug print

        print(f"[VyroConfigLoader] Available classifier paths: {paths}")  # Debug print
        return {
            "required": {
                "config_path": (folder_paths.get_filename_list("vyro_configs"),),
                "classifier_path": (paths,),
            }
        }
    
    RETURN_TYPES = ("LIST","DICT","DICT","TRANSFORMER","LIST")
    RETURN_NAMES = ("styles","prompt_tree","model_config","classifier","unweighted_styles")
    FUNCTION = "load_config"
    CATEGORY = "Vyro/Loaders"
    
    # def load_config(self, config_path, classifier_path):
    #     config_path = folder_paths.get_full_path("vyro_configs", config_path)
    #     classifier_path = os.path.join(folder_names_and_paths["spacy"][0][0],classifier_path)
    #     # classifier = pipeline("zero-shot-classification", model=classifier_path,device='cuda:0',local_files_only=True,use_safetensors=True)
    #     spacy.prefer_gpu(gpu_id=0)
    #     classifier = spacy.load(classifier_path)
    #     # classifier = pipeline("zero-shot-classification", model=classifier_path, config=f'{classifier_path}.json', device=0)
    #     with open(config_path, 'r') as json_file:
    #         try:
    #             config = json.load(json_file)
    #         except json.JSONDecodeError as json_e:
    #             print(f"[VyroConfigLoader] Error loading {config_path}:", json_e)
    #             return None
    #         unweighted_styles = []
    #         for style in config['styles']:
    #             if ':' in style:
    #                 style = style.split(':')[0]
    #             unweighted_styles.append(style)
    #         return (config['styles'], config['prompt_tree'], config['model_config'], classifier, unweighted_styles)

    def load_config(self, config_path, classifier_path):
        config_path = folder_paths.get_full_path("vyro_configs", config_path)
        classifier_path = os.path.join(folder_names_and_paths["spacy"][0][0], classifier_path)
        
        # Load the configuration file first to get styles
        with open(config_path, 'r') as json_file:
            try:
                config = json.load(json_file)
            except json.JSONDecodeError as json_e:
                print(f"[VyroConfigLoader] Error loading {config_path}:", json_e)
                return None
        
        # Extract styles from config
        styles_list = []
        unweighted_styles = []
        for style in config['styles']:
            if ':' in style:
                style_name = style.split(':')[0]
            else:
                style_name = style
            unweighted_styles.append(style_name)
            styles_list.append(style_name.replace(' ', '_'))
        
        # Load the base spaCy model
        spacy.prefer_gpu(gpu_id=0)
        classifier = spacy.load(classifier_path)
        
        # Remove existing textcat components if any
        if "textcat" in classifier.pipe_names:
            classifier.remove_pipe("textcat")
        if "textcat_multilabel" in classifier.pipe_names:
            classifier.remove_pipe("textcat_multilabel")
        
        # Create a custom style matcher component instead of textcat_multilabel
        @classifier.component("style_matcher")
        def style_matcher(doc):
            # Initialize scores dictionary
            doc.cats = {}
            
            # Simple rule-based matching
            text_lower = doc.text.lower()
            
            # Set a base score for all styles
            for style in styles_list:
                style_human = style.replace('_', ' ').lower()
                # Default low score
                base_score = 0.1
                
                # Check for exact matches
                if style_human in text_lower:
                    base_score = 0.9
                # Check for partial matches
                elif any(word in text_lower for word in style_human.split()):
                    base_score = 0.5
                    
                doc.cats[style] = base_score
            
            # If no strong matches found, set the first style as default with medium score
            if not any(score > 0.5 for score in doc.cats.values()) and styles_list:
                doc.cats[styles_list[0]] = 0.6
                
            return doc
        
        # Add the component to the pipeline
        if "style_matcher" not in classifier.pipe_names:
            classifier.add_pipe("style_matcher")
        
        print(f"[VyroConfigLoader] Successfully configured style_matcher with {len(styles_list)} labels")
        print(f"[VyroConfigLoader] Pipeline: {classifier.pipe_names}")
        
        return (config['styles'], config['prompt_tree'], config['model_config'], classifier, unweighted_styles)



class VyroModelLoader:
    def __init__(self):
        self.chkp_loader = nodes.CheckpointLoaderSimple()
        self.lora_loader = nodes.LoraLoader()
        self.tree = None
        self.config = None
        print("\n\nInitializing VyroModelLoader")
        
    @lru_cache(maxsize=6)
    def get_model(self, cfg):
        base = self.config['configs'][cfg]['base']
        refiner = self.config['configs'][cfg]['refiner']
        loras = self.config['configs'][cfg]['loras']
        tonemap_multiplier = self.config['configs'][cfg]['tonemap']
        base_model, base_clip, _ = self.chkp_loader.load_checkpoint(base)
        refiner_model, refiner_clip, _ = self.chkp_loader.load_checkpoint(refiner)
        for lora in loras:
            base_model, base_clip = self.lora_loader.load_lora(base_model, base_clip, lora['name'], lora['unet'], lora['clip'])
            
        def sampler_tonemap_reinhard(args):
            cond = args["cond"]
            uncond = args["uncond"]
            cond_scale = args["cond_scale"]
            noise_pred = (cond - uncond)
            noise_pred_vector_magnitude = (torch.linalg.vector_norm(noise_pred, dim=(1)) + 0.0000000001)[:,None]
            noise_pred /= noise_pred_vector_magnitude

            mean = torch.mean(noise_pred_vector_magnitude, dim=(1,2,3), keepdim=True)
            std = torch.std(noise_pred_vector_magnitude, dim=(1,2,3), keepdim=True)

            top = (std * 3 + mean) * tonemap_multiplier

            #reinhard
            noise_pred_vector_magnitude *= (1.0 / top)
            new_magnitude = noise_pred_vector_magnitude / (noise_pred_vector_magnitude + 1.0)
            new_magnitude *= top

            return uncond + noise_pred * new_magnitude * cond_scale

        base_model = base_model.clone()
        base_model.set_model_sampler_cfg_function(sampler_tonemap_reinhard)
        
        refiner_model = refiner_model.clone()
        refiner_model.set_model_sampler_cfg_function(sampler_tonemap_reinhard)
        
        return (base_model, refiner_model, base_clip, refiner_clip)
        
        
    @classmethod
    def INPUT_TYPES(s):   
        return {
            "required": {
                "style": ("STYLE",),
                "prompt_tree": ("DICT",),
                "model_config": ("DICT",),
            }
        }
    
    RETURN_TYPES = ("MODEL","MODEL","CLIP","CLIP")
    RETURN_NAMES = ("base_model","refiner_model","base_clip","refiner_clip")
    FUNCTION = "load"
    CATEGORY = "Vyro/Loaders"
    
    def load(self, style, prompt_tree, model_config):
        print("\n\nExecuting VyroModelLoader load function...")
        if prompt_tree is None:
            raise ValueError("Prompt tree is None")

        if style is None or style == "qr":
            print("β›” Style is qr changing to default qr models")
            self.tree = prompt_tree
            self.config = model_config
            cfg = 'default_qr'
            return self.get_model(cfg)
            #raise ValueError("Style is None")


        if style is None or style == "":
            print("β›” Style is none using Default config")
            self.tree = prompt_tree
            self.config = model_config
            cfg = 'default'
            return self.get_model(cfg)
            #raise ValueError("Style is None")
        
        if style not in prompt_tree.keys():
            raise ValueError("Style not in prompt tree")
        
        node = prompt_tree[style]
        if 'model_config' not in node:
            cfg = 'default'
        else:
            cfg = node['model_config']
            
        self.tree = prompt_tree
        self.config = model_config
        
        return self.get_model(cfg)
    
    
    
class VyroOneflowModelLoader:
    def __init__(self):
        self.chkp_loader = nodes.CheckpointLoaderSimple()
        self.lora_loader = nodes.LoraLoader()
        self.tree = None
        self.config = None
        print("\n\nInitializing VyroModelLoader")
        
    @lru_cache(maxsize=6)
    def get_model(self, cfg):
        base = self.config['configs'][cfg]['base']
        refiner = self.config['configs'][cfg]['refiner']
        loras = self.config['configs'][cfg]['loras']
        tonemap_multiplier = self.config['configs'][cfg]['tonemap']
        base_model, base_clip, _ = self.chkp_loader.load_checkpoint(base)
        refiner_model, refiner_clip, _ = self.chkp_loader.load_checkpoint(refiner)
        for lora in loras:
            base_model, base_clip = self.lora_loader.load_lora(base_model, base_clip, lora['name'], lora['unet'], lora['clip'])
            
        def sampler_tonemap_reinhard(args):
            cond = args["cond"]
            uncond = args["uncond"]
            cond_scale = args["cond_scale"]
            noise_pred = (cond - uncond)
            noise_pred_vector_magnitude = (torch.linalg.vector_norm(noise_pred, dim=(1)) + 0.0000000001)[:,None]
            noise_pred /= noise_pred_vector_magnitude

            mean = torch.mean(noise_pred_vector_magnitude, dim=(1,2,3), keepdim=True)
            std = torch.std(noise_pred_vector_magnitude, dim=(1,2,3), keepdim=True)

            top = (std * 3 + mean) * tonemap_multiplier

            #reinhard
            noise_pred_vector_magnitude *= (1.0 / top)
            new_magnitude = noise_pred_vector_magnitude / (noise_pred_vector_magnitude + 1.0)
            new_magnitude *= top

            return uncond + noise_pred * new_magnitude * cond_scale

        base_model = base_model.clone()
        base_model.set_model_sampler_cfg_function(sampler_tonemap_reinhard)
                
        refiner_model = refiner_model.clone()
        refiner_model.set_model_sampler_cfg_function(sampler_tonemap_reinhard)
        
        return (base_model, refiner_model, base_clip, refiner_clip)
        
        
    @classmethod
    def INPUT_TYPES(s):   
        return {
            "required": {
                "style": ("STYLE",),
                "prompt_tree": ("DICT",),
                "model_config": ("DICT",),
            }
        }
    
    RETURN_TYPES = ("MODEL","MODEL","CLIP","CLIP")
    RETURN_NAMES = ("base_model","refiner_model","base_clip","refiner_clip")
    FUNCTION = "load"
    CATEGORY = "Vyro/Loaders"
    
    def load(self, style, prompt_tree, model_config):
        print("\n\nExecuting VyroOneflowModelLoader load function...")
        
        if prompt_tree is None:
            raise ValueError("Prompt tree is None")

        if style is None or style == "qr":
            print("β›” Style is qr changing to default qr models")
            self.tree = prompt_tree
            self.config = model_config
            cfg = 'default_qr'
            return self.get_model(cfg)
            #raise ValueError("Style is None")


        if style is None or style == "":
            print("β›” Style is none using Default config")
            self.tree = prompt_tree
            self.config = model_config
            cfg = 'default'
            return self.get_model(cfg)
            #raise ValueError("Style is None")
        
        if style not in prompt_tree.keys():
            raise ValueError("Style not in prompt tree")
        
        node = prompt_tree[style]
        if 'model_config' not in node:
            cfg = 'default'
        else:
            cfg = node['model_config']
            
        self.tree = prompt_tree
        self.config = model_config
        
        return self.get_model(cfg)     


class VyroOneFlowBaseModelLoader:
    def __init__(self) -> None:
        self.chkp_loader = nodes.CheckpointLoaderSimple()
        print("INITIALIZING ONEFLOW BASE MODEL LOADER")
    
    @lru_cache(maxsize=6)
    def get_base_model(self, base_model):
        print(f"\n\nLoading Base Model: {base_model}\n\n")
        base_model, base_clip, _ = self.chkp_loader.load_checkpoint(base_model)
        tonemap_multiplier = 1.0
        
        def sampler_tonemap_reinhard(args):
            cond = args["cond"]
            uncond = args["uncond"]
            cond_scale = args["cond_scale"]
            noise_pred = (cond - uncond)
            noise_pred_vector_magnitude = (torch.linalg.vector_norm(noise_pred, dim=(1)) + 0.0000000001)[:,None]
            noise_pred /= noise_pred_vector_magnitude

            mean = torch.mean(noise_pred_vector_magnitude, dim=(1,2,3), keepdim=True)
            std = torch.std(noise_pred_vector_magnitude, dim=(1,2,3), keepdim=True)

            top = (std * 3 + mean) * tonemap_multiplier

            #reinhard
            noise_pred_vector_magnitude *= (1.0 / top)
            new_magnitude = noise_pred_vector_magnitude / (noise_pred_vector_magnitude + 1.0)
            new_magnitude *= top

            return uncond + noise_pred * new_magnitude * cond_scale
        
        
        base_model = base_model.clone()
        base_model.set_model_sampler_cfg_function(sampler_tonemap_reinhard)
    
        return (base_model, base_clip)
        

    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "base_model": (folder_paths.get_filename_list("checkpoints"), ),
            }
        }
    
    RETURN_TYPES = ("MODEL", "CLIP",)
    RETURN_NAMES = ("base_model", "base_clip",)
    FUNCTION = "load"
    CATERGORY = "Vyro/Loaders/Oneflow"
    
    def load(self, base_model):
        return self.get_base_model(base_model)


class VyroLoraLoader:
    
    def __init__(self) -> None:
        self.lora_loader = nodes.LoraLoader()
        self.tree = None
        self.config = None
        print("\n\nInitializing Vyro LORA Loader\n\n")
    
    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "base_model": ("MODEL",),
                "base_clip": ("CLIP",),
                "style": ("STYLE",),
                "prompt_tree": ("DICT",),
                "model_config": ("DICT",),
            }
        }
    RETURN_TYPES = ("MODEL", "CLIP")
    RETURN_NAMES = ("base_model", "base_clip")
    FUNCTION = "load_loras"
    CATEGORY = "Vyro/Loaders/Lora"
    
    def load_loras(self, base_model, base_clip, style, prompt_tree, model_config):
        print("\n\nExecuting VyroLORA load function...")
        if prompt_tree is None:
            raise ValueError("Prompt tree is None")

        if style is None or style == "qr":
            print("β›” Style is qr changing to default qr models")
            self.tree = prompt_tree
            self.config = model_config
            cfg = 'default_qr'
            return self.get_model(cfg)
            #raise ValueError("Style is None")


        if style is None or style == "":
            print("β›” Style is none using Default config")
            self.tree = prompt_tree
            self.config = model_config
            cfg = 'default'
            return self.get_model(cfg)
            #raise ValueError("Style is None")
        
        if style not in prompt_tree.keys():
            raise ValueError("Style not in prompt tree")
        
        node = prompt_tree[style]
        if 'model_config' not in node:
            cfg = 'default'
        else:
            cfg = node['model_config']
            
        self.tree = prompt_tree
        self.config = model_config
        
        loras = self.config['configs'][cfg]['loras']
        for lora in loras:
            print(f"\nLoading Lora: {lora['name']}\n")
            base_model, base_clip = self.lora_loader.load_lora(base_model, base_clip, lora['name'], lora['unet'], lora['clip'])
        
        return base_model, base_clip        


class VyroOneFlowRefinerModelLoader:
    def __init__(self) -> None:
        self.chkp_loader = nodes.CheckpointLoaderSimple()
        self.tree = None
        self.config = None
        print("INITIALIZING ONEFLOW REFINER MODEL LOADER")
    
    @lru_cache(maxsize=6)
    def get_refiner_model(self, cfg):
        refiner = self.config['configs'][cfg]['refiner']
        
        print(f"\n\nLoading Refiner Model: {refiner}\n\n")
        
        tonemap_multiplier = self.config['configs'][cfg]['tonemap']
        
        refiner_model, refiner_clip, _ = self.chkp_loader.load_checkpoint(refiner)
        
        def sampler_tonemap_reinhard(args):
            cond = args["cond"]
            uncond = args["uncond"]
            cond_scale = args["cond_scale"]
            noise_pred = (cond - uncond)
            noise_pred_vector_magnitude = (torch.linalg.vector_norm(noise_pred, dim=(1)) + 0.0000000001)[:,None]
            noise_pred /= noise_pred_vector_magnitude

            mean = torch.mean(noise_pred_vector_magnitude, dim=(1,2,3), keepdim=True)
            std = torch.std(noise_pred_vector_magnitude, dim=(1,2,3), keepdim=True)

            top = (std * 3 + mean) * tonemap_multiplier

            #reinhard
            noise_pred_vector_magnitude *= (1.0 / top)
            new_magnitude = noise_pred_vector_magnitude / (noise_pred_vector_magnitude + 1.0)
            new_magnitude *= top

            return uncond + noise_pred * new_magnitude * cond_scale

        refiner_model = refiner_model.clone()
        refiner_model.set_model_sampler_cfg_function(sampler_tonemap_reinhard)
                
        return (refiner_model, refiner_clip)

    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "style": ("STYLE",),
                "prompt_tree": ("DICT",),
                "model_config": ("DICT",)
            }
        }
    
    RETURN_TYPES = ("MODEL", "CLIP")
    RETURN_NAMES = ("refiner_model", "refiner_clip")
    FUNCTION = "load"
    CATERGORY = "Vyro/Loaders/Oneflow"
    
    def load(self, style, prompt_tree, model_config):
        if prompt_tree is None:
            raise ValueError("Prompt Tree is None")

        if style is None or style == "qr":
            print("β›” Style is qr changing to default qr models")
            self.tree = prompt_tree
            self.config = model_config
            cfg = "default_qr"
            return self.get_model(cfg)

        if style is None or style == "":
            print("β›” Style is none using Default config")
            self.tree = prompt_tree
            self.config = model_config
            cfg = 'default'
            return self.get_model(cfg)
            #raise ValueError("Style is None")
        
        if style not in prompt_tree.keys():
            raise ValueError("Style not in prompt tree")
        
        node = prompt_tree[style]
        if 'model_config' not in node:
            cfg = 'default'
        else:
            cfg = node['model_config']
            
        self.tree = prompt_tree
        self.config = model_config
        
        return self.get_refiner_model(cfg)
        

        

NODE_CLASS_MAPPINGS = {
    "Vyro Config Loader": VyroConfigLoader,
    "Vyro Model Loader": VyroModelLoader,
    "Vyro OneFlow Model Loader": VyroOneflowModelLoader,
    "Vyro Oneflow Base Model Loader": VyroOneFlowBaseModelLoader,
    "Vyro Oneflow Refiner Model Loader": VyroOneFlowRefinerModelLoader,
    "Vyro LoRa Loader": VyroLoraLoader,
}
NODE_DISPLAY_NAME_MAPPINGS = {
    "VyroConfigLoader": "Vyro Config Loader",
    "VyroModelLoader": "Vyro Model Loader",
    "VyroOneFlowModelLoader": "Vyro Oneflow Model Loader",
    "VyroOneFlowBaseModelLoader": "Vyro Oneflow Base Model Loader",
    "VyroOneflowRefinerModelLoader": "Vyro Oneflow Refiner Model Loader",
    "VyroLoraLoader": "Vyro LoRa Loader"
}