File size: 7,365 Bytes
6fecfbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190

import base64
import io

from PIL import Image, ImageOps

from nodes import ImageScale, VAEEncode
import numpy as np
from perlin_noise import perlin_noise
import torch
from torchvision.transforms import ToPILImage
from ..utils import VyroParams
from .perlin import perlin_power_fractal_batch
from PIL import Image


def pil2tensor(image):
    return torch.from_numpy(np.array(image).astype(np.float32) / 255.0).unsqueeze(0)

class VyroPipeInputV2:
    def __init__(self):
        self.vae_encoder = VAEEncode()
        self.image_scale = ImageScale()
        pass
    
    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "user_prompt": ("STRING", {"multiline": True}),
                "mode": (VyroParams.MODE, {"default": VyroParams.MODE[0]}),
                "vae": ("VAE",),
                "init_noise_mode": (["perlin1","perlin2","zeros"], {"default": "perlin1"}),
            },
            "optional": {
                "user_neg_prompt": ("STRING",{"multiline": True}),
                "batch_size": ("INT", {"default": 1, "max": 4, "min": 1, "step": 1}),
                "cfg": ("FLOAT", {"default": 7.5, "min":1.0, "max":30.0, "step":0.1}),
                "steps": ("INT", {"default": 20, "min":10, "max":150, "step":1}),
                "width": ("INT", {"default": 1024, "min":64, "max":4096, "step":8}),
                "height": ("INT", {"default": 1024, "min":64, "max":4096, "step":8}),
                "seed": ("INT", {"default": 1, "min": 1, "max": 2**32 - 1}),
                "init_img": ("STRING", {"multiline": True}),
                "denoise": ("FLOAT", {"default" : 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
                "stage1_strength": ("FLOAT", {"default": 0.25, "min": 0.0, "max": 1.0, "step": 0.01}),
                "stage2_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
                "efficiency_multiplier": (VyroParams.MULTIPLIER, {"default": VyroParams.MULTIPLIER[0]}),
                
                
            }
        }

    RETURN_TYPES = ("VYRO_PARAMS",)
    RETURN_NAMES = ("vyro_params",)
    

    FUNCTION = "prep_input"

    #OUTPUT_NODE = False

    CATEGORY = "Vyro"

    
    
    def blank_image(self, width, height, red, green, blue):
        # Ensure multiples
        width = (width // 8) * 8
        height = (height // 8) * 8

        # Blend image
        blank = Image.new(mode="RGB", size=(width, height),
                          color=(red, green, blue))

        return pil2tensor(blank)
    
    def image_to_mask(self, image, channel):
        channels = ["red", "green", "blue", "alpha"]
        mask = image[:, :, :, channels.index(channel)]
        return (mask,)
    
    def mask_to_image(self, mask):
        result = mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])).movedim(1, -1).expand(-1, -1, -1, 3)
        return (result,)

   



    def upscale_image(self,image, upscale_method='nearest', width=512, height=512, crop='disabled'):
        if width == 0 and height == 0:
            return image
        
        original_aspect_ratio = image.width / image.height
        target_aspect_ratio = width / height
        
        pil_methods = {
            'nearest': Image.NEAREST,
            'bilinear': Image.BILINEAR,
            'area': Image.HAMMING,
            'bicubic': Image.BICUBIC,
            'lanczos': Image.LANCZOS
        }
        
        if crop == 'center':
            if original_aspect_ratio > target_aspect_ratio:
                new_height = height
                new_width = int(round(height * original_aspect_ratio))
            else:
                new_width = width
                new_height = int(round(width / original_aspect_ratio))
            
            resized_image = image.resize((new_width, new_height), pil_methods[upscale_method])
            
            left = (resized_image.width - width) / 2
            top = (resized_image.height - height) / 2
            right = (resized_image.width + width) / 2
            bottom = (resized_image.height + height) / 2
            resized_image = resized_image.crop((left, top, right, bottom))
            
        else:
            if width == 0:
                width = int(round(height * original_aspect_ratio))
            elif height == 0:
                height = int(round(width / original_aspect_ratio))
            
            resized_image = image.resize((width, height), pil_methods[upscale_method])
        
        return resized_image


    def prep_input(self, user_prompt, mode, vae, init_noise_mode, user_neg_prompt='', batch_size=1, cfg=7.5, steps=20, width=1024, height=1024, seed=1, init_img='', denoise=1.0,stage1_strength=0.25, stage2_strength=1.0, efficiency_multiplier=1.0):

        width = int(width / efficiency_multiplier)
        height = int(height / efficiency_multiplier)
        
        # width = (width // 8) * 8
        # height = (height // 8) * 8
        
        if init_img == "" or init_img is None or init_img == 'undefined':
            generator = torch.cuda.manual_seed(seed)
            if 'perlin2' in init_noise_mode:
                init_img = perlin_noise(grid_shape=(2, 8), out_shape=(width // 8, height // 8), batch_size=batch_size*4, generator=generator)
                init_img = init_img.reshape(batch_size, 4, height // 8, width // 8)
            elif 'perlin1' in init_noise_mode:
                init_img = perlin_power_fractal_batch(
                    batch_size=batch_size,
                    width=width // 8,
                    height=height // 8,
                    X=0,
                    Y=0,
                    Z=0,
                    frame=0,
                    seed=seed
                )[0]
                init_img = init_img.reshape(batch_size, 4, height // 8, width // 8)
            else:
                init_img = torch.zeros([batch_size, 4, height // 8, width // 8])
            # init_img = self.blank_image(width, height, 0, 0, 0)
            # init_img = init_img.unsqueeze(0)
            # init_img = latent = torch.zeros([batch_size, 4, height // 8, width // 8])
        else:
            # Convert init_img from byte string to PIL image
            # Get bytes from string
            init_img_bytes = base64.b64decode(init_img)
            img = Image.open(io.BytesIO(init_img_bytes))
            # Center crop to width/height
            
            init_img = pil2tensor(img)
            init_img = self.image_scale.upscale(init_img, "nearest-exact", int(width), int(height), "center")[0]
            init_img = init_img.squeeze(0)
            init_img = init_img.repeat(batch_size, 1, 1, 1)
            
            init_img = self.vae_encoder.encode(vae, init_img)[0]['samples']
        

        
        params = VyroParams(latents={"samples":init_img}, user_prompt=user_prompt, mode=mode, cfg=cfg, batch_size=batch_size, steps=steps, width=width, height=height, seed=seed, denoise=denoise, user_neg_prompt=user_neg_prompt, stage1_strength=stage1_strength, stage2_strength=stage2_strength, efficiency_multiplier=efficiency_multiplier)

         
        return (params,)

NODE_CLASS_MAPPINGS = {
    "Vyro Pipe Input V2": VyroPipeInputV2,
}

# A dictionary that contains the friendly/humanly readable titles for the nodes
NODE_DISPLAY_NAME_MAPPINGS = {
    "VyroPipeInputV2": "Vyro Pipe Input V2",
}