File size: 8,323 Bytes
6fecfbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
import base64
import io

from PIL import Image

import numpy as np
import simpleeval
import torch

from ..utils import VyroParams

class VyroParamUpdater:
    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "vyro_params": ("VYRO_PARAMS",),
            },
            "optional": {
                "latents": ("LATENT",),
            }
        }
        
    RETURN_TYPES = ("VYRO_PARAMS",)
    RETURN_NAMES = ("vyro_params",)
    FUNCTION = "update"
    CATEGORY = "Vyro/Routing"
    
    def update(self, vyro_params:VyroParams, latents=None):
        if latents is not None:
            vyro_params.latents = latents
        return (vyro_params,)
    
class VyroParamExtractor:
    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "vyro_params": ("VYRO_PARAMS",),
            }
        }
    RETURN_TYPES = ("LATENT","STRING","STRING","STRING","FLOAT","INT","INT","INT","INT","INT","FLOAT","FLOAT","FLOAT","FLOAT","STRING","STRING","STRING","BOOLEAN")
    RETURN_NAMES = ("latents","user_prompt","user_neg_prompt","mode","cfg","batch_size","steps","width","height","seed","denoise","stage1_strength","stage2_strength","efficiency_multiplier","style","final_positive_prompt","final_negative_prompt","is_raw")
    FUNCTION = "input"
    CATEGORY = "Vyro/Routing"
    
    def input(self, vyro_params:VyroParams):
    
        return (vyro_params.latents, vyro_params.user_prompt, vyro_params.user_neg_prompt, vyro_params.mode, vyro_params.cfg, vyro_params.batch_size, vyro_params.steps, vyro_params.width, vyro_params.height, vyro_params.seed, vyro_params.denoise, vyro_params.stage1_strength, vyro_params.stage2_strength, vyro_params.efficiency_multiplier, vyro_params.style, vyro_params.final_positive_prompt, vyro_params.final_negative_prompt, vyro_params.is_raw)

class VyroModelStreamInput:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {
                    "model": ("MODEL",),
                    "clip": ("CLIP",),
                }, 
                "optional": {
                    "refiner": ("MODEL",),
                    "refiner_clip": ("CLIP",),
                }}
    
    RETURN_TYPES = ("*",)
    RETURN_NAMES = ("output",)
    FUNCTION = "input"
    CATEGORY = "Vyro/Routing"
    
    def input(self, model, clip, refiner=None, refiner_clip=None):
        if refiner is None:
            return {"model": model, "clip": clip, "refiner": None, "refiner_clip": None}, 
        else:
            return {"model": model, "clip": clip, "refiner": refiner, "refiner_clip": refiner_clip},

class VyroModelStreamOutput:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {
                    "input": ("*",),
                }}
    RETURN_TYPES = ("MODEL","CLIP","MODEL","CLIP")
    RETURN_NAMES = ("model","clip","refiner_model","refiner_clip")
    FUNCTION = "output"
    CATEGORY = "Vyro/Routing"
    
    def output(self, input):
        if input["refiner"] is None:
            return input["model"], input["clip"], None, None
        else:
            return input["model"], input["clip"], input["refiner"], input["refiner_clip"]
    
class VyroStyleSwitcher:
    @classmethod
    def INPUT_TYPES(s):
        input_types = {"required": {
                    "style": ("STYLE", ),
                    "default": ("*",)
                    },
                       "optional": {}
                }
        for style in VyroParams.STYLES:
            input_types["optional"][style] = ("*",)
        return input_types
    
    RETURN_TYPES = ("*",)
    RETURN_NAMES = ("output",)
    FUNCTION = "switch"
    CATEGORY = "Vyro/Routing"
    
    def switch(self, style, default, **kwargs):
        return (kwargs.get(style, default), )
        

class VyroModeLatentMuxer:
    @classmethod
    def INPUT_TYPES(s):
        types = {
            "required": {
                "vyro_params": ("VYRO_PARAMS",),
            }
        }
        for mode in VyroParams.MODE:
            types["required"][mode] = ("LATENT",)
        return types
        
    RETURN_TYPES = ("LATENT",)
    RETURN_NAMES = ("latents",)
    FUNCTION = "mux_latents"
    CATEGORY = "Vyro/Routing"
    
    def mux_latents(self, vyro_params:VyroParams, **kwargs):
        mode = vyro_params.mode
        return (kwargs[mode],)

def tensor2pil(image):
    return Image.fromarray(np.clip(255. * image.cpu().numpy().squeeze(), 0, 255).astype(np.uint8))

class VyroImageToString:
    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "image": ("IMAGE",),
            }
        }
    
    RETURN_TYPES = ("STRING",)
    RETURN_NAMES = ("string",)
    FUNCTION = "image_to_string"
    CATEGORY = "Vyro/Routing"
    
    def image_to_string(self, image):
        batch_size = image.shape[0]
        if batch_size > 1:
            split = torch.split(image, 1, dim=0)
            strs = []
            for i in range(len(split)):
                image = split[i]
                image = image.squeeze(0)
                img = tensor2pil(image)
                
                buffered = io.BytesIO()
                img.save(buffered, format="PNG")
                img_str = base64.b64encode(buffered.getvalue())
                strs.append(img_str.decode("utf-8"))
            return (strs,)

        image = image.squeeze(0)
        img = tensor2pil(image)
        
        buffered = io.BytesIO()
        img.save(buffered, format="PNG")
        img_str = base64.b64encode(buffered.getvalue())
        
        return (img_str.decode("utf-8"),)

class VyroModeFilter:
    @classmethod
    def INPUT_TYPES(s):
            
        req =  {
            "required": {
                "vyro_params": ("VYRO_PARAMS",),
            }
        }
        for mode in VyroParams.MODE:
            req["required"][f'{mode}'] = (VyroParams.ALLOWED, {"default": VyroParams.ALLOWED[0]})
        return req
        
    RETURN_TYPES = ("VYRO_PARAMS",)
    RETURN_NAMES = ("vyro_params",)
    FUNCTION = "filter"
    CATEGORY = "Vyro/Routing"
    
    def filter(self, vyro_params:VyroParams, **kwargs):
        mode = vyro_params.mode
        
        state = kwargs[mode]
        if state == VyroParams.ALLOWED[1]:
            raise ValueError("If you are receiving this error, it's because you're trying to execute the workflow in Comfy without detaching the preview nodes for the inactive modes. If you are reciving this error in the API, you are selecting the wrong output node.")
        
        return (vyro_params,)

class VyroModelSwitcher:
    @classmethod
    def INPUT_TYPES(s):
            
        return  {
            "required": {
                "vyro_params": ("VYRO_PARAMS",),
                "a": ("MODEL",),
                "b": ("MODEL",),
                "return_a_if_true": ("STRING", {"default": "face_swap_img is not None", "multiline": False}),
            }
        }
    
    RETURN_TYPES = ("MODEL",)
    FUNCTION = "switch"
    CATEGORY = "Vyro/Routing"
    
    def switch(self, vyro_params:VyroParams, a, b, return_a_if_true):
        names = {}
        for n in VyroParams.PARAMS:
            names[n] = getattr(vyro_params, n)
        
        result = simpleeval.simple_eval(return_a_if_true, names=names)
        if result:
            return (a,)
        else:
            return (b,)
        
NODE_CLASS_MAPPINGS = {
    "Vyro Mode Latent Muxer":  VyroModeLatentMuxer,
    "Vyro Style Switcher": VyroStyleSwitcher,
    "Vyro Model Stream Input": VyroModelStreamInput,
    "Vyro Model Stream Output": VyroModelStreamOutput,
    "Vyro Param Extractor": VyroParamExtractor,
    "Vyro Image to String": VyroImageToString,
    "Vyro Mode Filter": VyroModeFilter,
    "Vyro Model Switcher": VyroModelSwitcher,
    "Vyro Param Updater": VyroParamUpdater,
}


NODE_DISPLAY_NAME_MAPPINGS = {
    "VyroModeLatentMuxer": "Vyro Mode Latent Muxer",
    "VyroStyleSwitcher": "Vyro Style Switcher",
    "VyroModelStreamInput": "Vyro Model Stream Input",
    "VyroModelStreamOutput": "Vyro Model Stream Output",
    "VyroParamExtractor": "Vyro Param Extractor",
    "VyroImageToString": "Vyro Image to String",
    "VyroModeFilter": "Vyro Mode Filter",
    "VyroModelSwitcher": "Vyro Model Switcher",
    "VyroParamUpdater": "Vyro Param Updater",
}