File size: 11,414 Bytes
6fecfbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
import random

import comfy
import comfy.model_management
import comfy.sample
import comfy.samplers
import comfy.utils
from comfy.utils import ProgressBar
import numpy as np
import torch

from ..utils import VyroParams
from ..utils.restart_sampling import (
    DDIMWrapper,
    KSamplerRestartWrapper,
    RESWrapper,
    SCHEDULER_MAPPING,
    _restart_scheduler,
    _restart_segments,
    _total_steps,
    prepare_restart_segments,
)
from ..utils.sdxl_ksampler import CfgMethods, sdxl_ksampler

def get_supported_samplers():
    samplers = comfy.samplers.KSampler.SAMPLERS.copy()
    samplers.remove("uni_pc")
    samplers.remove("uni_pc_bh2")

    # SDE samplers cannot be used with restarts
    samplers.remove("dpmpp_sde")
    samplers.remove("dpmpp_sde_gpu")
    samplers.remove("dpmpp_2m_sde")
    samplers.remove("dpmpp_2m_sde_gpu")
    samplers.append("res")
    return samplers


def get_supported_restart_schedulers():
    return list(SCHEDULER_MAPPING.keys())


def sdxl_restarts_ksampler(base_model, refiner_model, seed, base_steps, refiner_steps, cfg, sampler_name, scheduler, base_positive, base_negative, refiner_positive, refiner_negative, latent, segments, restart_scheduler, denoise=1.0, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False, refiner_detail_boost=0.0,cfg_clamp_after_step=0):
    global _total_steps, _restart_segments, _restart_scheduler
    _restart_scheduler = restart_scheduler
    _restart_segments = prepare_restart_segments(segments)
    if sampler_name == "res":
        sampler_wrapper = RESWrapper(start_step, last_step, _restart_segments, _restart_scheduler, cfg_clamp_after_step)
    elif sampler_name == "ddim":
        sampler_wrapper = DDIMWrapper(start_step, last_step, _restart_segments, _restart_scheduler, cfg_clamp_after_step)
    else:
        sampler_wrapper = KSamplerRestartWrapper(sampler_name, start_step, last_step, _restart_segments, _restart_scheduler, cfg_clamp_after_step)
    # Add the additional steps to the progress bar
    pbar_update_absolute = ProgressBar.update_absolute

    def pbar_update_absolute_wrapper(self, value, total=None, preview=None):
        pbar_update_absolute(self, value, _total_steps, preview)

    ProgressBar.update_absolute = pbar_update_absolute_wrapper
    
    
    try:
        result = sdxl_ksampler(base_model, refiner_model, seed, base_steps, refiner_steps, cfg, sampler_name,
                                   scheduler, base_positive, base_negative, refiner_positive, refiner_negative,
                                   latent, denoise=denoise, disable_noise=False,
                                   start_step=0, last_step=last_step, force_full_denoise=force_full_denoise,
                                   dynamic_base_cfg=cfg, dynamic_refiner_cfg=cfg,
                                   cfg_method=CfgMethods.TONEMAP, refiner_detail_boost=refiner_detail_boost, restart_wrapper=sampler_wrapper)
        return result
    finally:
        sampler_wrapper.cleanup()
        ProgressBar.update_absolute = pbar_update_absolute


class VyroSDXLSampler:
    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "params": ("VYRO_PARAMS",),
                "base_model": ("MODEL",),
                "base_positive": ("CONDITIONING", ),
                "base_negative": ("CONDITIONING", ),
                "sampler_name": (get_supported_samplers(), ),
                "scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
                "base_ratio": ("FLOAT", {"default": 0.8, "min": 0.0, "max": 1.0, "step": 0.01}),
                "denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
                "refiner_detail_boost": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.05},),
            },
            "optional": {
                "refiner_model": ("MODEL",),
                "refiner_positive": ("CONDITIONING", ),
                "refiner_negative": ("CONDITIONING", ),
                "latent_image": ("LATENT",),
            }
        }

    
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "sample"
    CATEGORY = "Vyro/Samplers"


    def sample(self, params:VyroParams, base_model, base_positive, base_negative,  sampler_name, scheduler, base_ratio, denoise, refiner_detail_boost, refiner_model=None, refiner_positive=None, refiner_negative=None, latent_image=None):

        if latent_image is None:
            latent_image = params.latents
            
        noise_seed = params.seed
        steps = params.steps
        cfg = params.cfg
        cfg_method = CfgMethods.TONEMAP
        dynamic_base_cfg = 0.0
        dynamic_refiner_cfg = 0.0

        has_refiner_model = refiner_model is not None

        base_steps = int(steps * (base_ratio + 0.0001)) if has_refiner_model else steps
        refiner_steps = max(0, steps - base_steps)


        if denoise < 0.005:
            return (params.latents,)

        torch.manual_seed(params.seed)
        random.seed(params.seed)
        np.random.seed(params.seed)
        
        if refiner_steps == 0 or not has_refiner_model:
            result = sdxl_ksampler(base_model, None, noise_seed, base_steps, 0, cfg, sampler_name,
                                   scheduler, base_positive, base_negative, None, None,
                                   latent_image, denoise=denoise, disable_noise=False, start_step=0, last_step=steps,
                                   force_full_denoise=True, dynamic_base_cfg=dynamic_base_cfg, cfg_method=cfg_method)
        else:
            result = sdxl_ksampler(base_model, refiner_model, noise_seed, base_steps, refiner_steps, cfg, sampler_name,
                                   scheduler, base_positive, base_negative, refiner_positive, refiner_negative,
                                   latent_image, denoise=denoise, disable_noise=False,
                                   start_step=0, last_step=steps, force_full_denoise=True,
                                   dynamic_base_cfg=dynamic_base_cfg, dynamic_refiner_cfg=dynamic_refiner_cfg,
                                   cfg_method=cfg_method, refiner_detail_boost=refiner_detail_boost)

        return result


class VyroKRestartSampler:
    def __init__(self) -> None:
        if 'res' not in comfy.samplers.KSampler.SAMPLERS:
            comfy.samplers.KSampler.SAMPLERS.append('res')
            
    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "params": ("VYRO_PARAMS",),
                "base_model": ("MODEL",),
                "base_positive": ("CONDITIONING", ),
                "base_negative": ("CONDITIONING", ),
                "refiner_model": ("MODEL",),
                "refiner_positive": ("CONDITIONING", ),
                "refiner_negative": ("CONDITIONING", ),
                "sampler_name": (get_supported_samplers(), ),
                "scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
                "segments": ("STRING", {"default": "[3,2,0.06,0.30],[3,1,0.30,0.59]", "multiline": False}),
                "restart_scheduler": (get_supported_restart_schedulers(), ),
                "begin_at_step": ("INT", {"default": 1, "min": 0, "max": 10000}),
                "end_at_step": ("INT", {"default": 10000, "min": 0, "max": 10000}),
                "add_noise": (["enable", "disable"], ),
                "return_with_leftover_noise": (["disable", "enable"], ),
                "base_ratio": ("FLOAT", {"default": 0.8, "min": 0.0, "max": 1.0, "step": 0.01}),
                "denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
                "refiner_detail_boost": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.05},),
                "cfg_clamp_after_step": ("INT", {"default": 0, "min": 0, "max": 10000}),
            },
             "optional": {
                    "refiner_prep_steps": ("INT", {"default": 0, "min": 0, "max": 10}),
                    "latent_image": ("LATENT",),
                    },
        }

    RETURN_TYPES = ("LATENT", "MODEL",)
    FUNCTION = "sample"
    CATEGORY = "Vyro/Samplers"

    def sample(self, params:VyroParams, base_model, base_positive, base_negative, refiner_model, refiner_positive, refiner_negative, sampler_name, scheduler, segments, restart_scheduler, begin_at_step, end_at_step, add_noise, return_with_leftover_noise, base_ratio, denoise, refiner_detail_boost, refiner_prep_steps=0, cfg_clamp_after_step=0, latent_image=None):  
        force_full_denoise = True
        if return_with_leftover_noise == "enable":
            force_full_denoise = False
        disable_noise = False
        if add_noise == "disable":
            disable_noise = True
            
        steps = params.steps
        base_steps = int(steps * (base_ratio + 0.0001))
        refiner_steps = max(0, steps - base_steps)
        if latent_image is None:
            input_latent = latent_image = params.latents
        else:
            input_latent = latent_image
        
        if denoise < 0.01:
            return (latent_image, )
        
        # if refiner_prep_steps is not None:
        #     if refiner_prep_steps >= base_steps:
        #         refiner_prep_steps = base_steps - 1

        #     if refiner_prep_steps > 0:
        #         start_at_step = refiner_prep_steps
        #         precondition_result = nodes.common_ksampler(refiner_model, params.seed + 2, steps, params.cfg, sampler_name, scheduler, refiner_positive, refiner_negative, latent_image, denoise=denoise, disable_noise=False, start_step=steps - refiner_prep_steps, last_step=steps, force_full_denoise=False)
        #         input_latent = precondition_result[0]
        
        torch.manual_seed(params.seed)
        random.seed(params.seed)
        np.random.seed(params.seed)
        
        if base_steps >= steps:
            
            out = sdxl_restarts_ksampler(base_model, None, params.seed, base_steps, refiner_steps, params.cfg, sampler_name, scheduler, base_positive, base_negative, refiner_positive, refiner_negative, input_latent, segments, restart_scheduler=restart_scheduler, denoise=denoise, disable_noise=disable_noise, start_step=begin_at_step, last_step=end_at_step, force_full_denoise=force_full_denoise, refiner_detail_boost=refiner_detail_boost, cfg_clamp_after_step=cfg_clamp_after_step)[0]
            # return restart_sampling(base_model, params.seed, steps, params.cfg, sampler_name, scheduler, base_positive, base_negative, input_latent, denoise, segments, restart_scheduler, begin_at_step, end_at_step, disable_noise, force_full_denoise)
            return (out, base_model)

        out = sdxl_restarts_ksampler(base_model, refiner_model, params.seed, base_steps, refiner_steps, params.cfg, sampler_name, scheduler, base_positive, base_negative, refiner_positive, refiner_negative, input_latent, segments, restart_scheduler=restart_scheduler, denoise=denoise, disable_noise=disable_noise, start_step=begin_at_step, last_step=end_at_step, force_full_denoise=force_full_denoise, refiner_detail_boost=refiner_detail_boost, cfg_clamp_after_step=cfg_clamp_after_step)[0]
        return (out, base_model)

NODE_CLASS_MAPPINGS = {
    "Vyro KRestart Sampler": VyroKRestartSampler,
    "Vyro SDXL Sampler": VyroSDXLSampler,
}

NODE_DISPLAY_NAME_MAPPINGS = {
    "VyroKRestartSampler": "Vyro KRestart Sampler",
    "VyroSDXLSampler": "Vyro SDXL Sampler",
}