File size: 9,537 Bytes
6fecfbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
import torch
from torch import no_grad, FloatTensor
from tqdm import tqdm
from typing import Protocol, Optional, Dict, Any, TypedDict, NamedTuple, Union, List
import math
from itertools import tee

def pairwise(iterable):
    "s -> (s0, s1), (s1, s2), (s2, s3), ..."
    a, b = tee(iterable)
    next(b, None)
    return zip(a, b)

class DenoiserModel(Protocol):
  def __call__(self, x: FloatTensor, t: FloatTensor, *args, **kwargs) -> FloatTensor: ...

class RefinedExpCallbackPayload(TypedDict):
  x: FloatTensor
  i: int
  sigma: FloatTensor
  sigma_hat: FloatTensor

class RefinedExpCallback(Protocol):
  def __call__(self, payload: RefinedExpCallbackPayload) -> None: ...

class NoiseSampler(Protocol):
  def __call__(self, x: FloatTensor) -> FloatTensor: ...

class StepOutput(NamedTuple):
  x_next: FloatTensor
  denoised: FloatTensor
  denoised2: FloatTensor

def _gamma(
  n: int,
) -> int:
  """
  https://en.wikipedia.org/wiki/Gamma_function
  for every positive integer n,
  Γ(n) = (n-1)!
  """
  return math.factorial(n-1)

def _incomplete_gamma(
  s: int,
  x: float,
  gamma_s: Optional[int] = None
) -> float:
  """
  https://en.wikipedia.org/wiki/Incomplete_gamma_function#Special_values
  if s is a positive integer,
  Γ(s, x) = (s-1)!*∑{k=0..s-1}(x^k/k!)
  """
  if gamma_s is None:
    gamma_s = _gamma(s)

  sum_: float = 0
  # {k=0..s-1} inclusive
  for k in range(s):
    numerator: float = x**k
    denom: int = math.factorial(k)
    quotient: float = numerator/denom
    sum_ += quotient
  incomplete_gamma_: float = sum_ * math.exp(-x) * gamma_s
  return incomplete_gamma_

# by Katherine Crowson
def _phi_1(neg_h: FloatTensor):
  return torch.nan_to_num(torch.expm1(neg_h) / neg_h, nan=1.0)

# by Katherine Crowson
def _phi_2(neg_h: FloatTensor):
  return torch.nan_to_num((torch.expm1(neg_h) - neg_h) / neg_h**2, nan=0.5)

# by Katherine Crowson
def _phi_3(neg_h: FloatTensor):
  return torch.nan_to_num((torch.expm1(neg_h) - neg_h - neg_h**2 / 2) / neg_h**3, nan=1 / 6)

def _phi(
  neg_h: float,
  j: int,
):
  """
  For j={1,2,3}: you could alternatively use Kat's phi_1, phi_2, phi_3 which perform fewer steps

  Lemma 1
  https://arxiv.org/abs/2308.02157
  ϕj(-h) = 1/h^j*∫{0..h}(e^(τ-h)*(τ^(j-1))/((j-1)!)dτ)

  https://www.wolframalpha.com/input?i=integrate+e%5E%28%CF%84-h%29*%28%CF%84%5E%28j-1%29%2F%28j-1%29%21%29d%CF%84
  = 1/h^j*[(e^(-h)*(-τ)^(-j)*τ(j))/((j-1)!)]{0..h}
  https://www.wolframalpha.com/input?i=integrate+e%5E%28%CF%84-h%29*%28%CF%84%5E%28j-1%29%2F%28j-1%29%21%29d%CF%84+between+0+and+h
  = 1/h^j*((e^(-h)*(-h)^(-j)*h^j*(Γ(j)-Γ(j,-h)))/(j-1)!)
  = (e^(-h)*(-h)^(-j)*h^j*(Γ(j)-Γ(j,-h))/((j-1)!*h^j)
  = (e^(-h)*(-h)^(-j)*(Γ(j)-Γ(j,-h))/(j-1)!
  = (e^(-h)*(-h)^(-j)*(Γ(j)-Γ(j,-h))/Γ(j)
  = (e^(-h)*(-h)^(-j)*(1-Γ(j,-h)/Γ(j))

  requires j>0
  """
  assert j > 0
  gamma_: float = _gamma(j)
  incomp_gamma_: float = _incomplete_gamma(j, neg_h, gamma_s=gamma_)

  phi_: float = math.exp(neg_h) * neg_h**-j * (1-incomp_gamma_/gamma_)

  return phi_

class RESDECoeffsSecondOrder(NamedTuple):
  a2_1: float
  b1: float
  b2: float

def _de_second_order(
  h: float,
  c2: float,
  simple_phi_calc = False,
) -> RESDECoeffsSecondOrder:
  """
  Table 3
  https://arxiv.org/abs/2308.02157
  ϕi,j := ϕi,j(-h) = ϕi(-cj*h)
  a2_1 = c2ϕ1,2
       = c2ϕ1(-c2*h)
  b1 = ϕ1 - ϕ2/c2
  """
  if simple_phi_calc:
    # Kat computed simpler expressions for phi for cases j={1,2,3}
    a2_1: float = c2 * _phi_1(-c2*h)
    phi1: float = _phi_1(-h)
    phi2: float = _phi_2(-h)
  else:
    # I computed general solution instead.
    # they're close, but there are slight differences. not sure which would be more prone to numerical error.
    a2_1: float = c2 * _phi(j=1, neg_h=-c2*h)
    phi1: float = _phi(j=1, neg_h=-h)
    phi2: float = _phi(j=2, neg_h=-h)
  phi2_c2: float = phi2/c2
  b1: float = phi1 - phi2_c2
  b2: float = phi2_c2
  return RESDECoeffsSecondOrder(
    a2_1=a2_1,
    b1=b1,
    b2=b2,
  )  

def _refined_exp_sosu_step(
  model: DenoiserModel,
  x: FloatTensor,
  sigma: FloatTensor,
  sigma_next: FloatTensor,
  c2 = 0.5,
  extra_args: Dict[str, Any] = {},
  pbar: Optional[tqdm] = None,
  simple_phi_calc = False,
) -> StepOutput:
  """
  Algorithm 1 "RES Second order Single Update Step with c2"
  https://arxiv.org/abs/2308.02157

  Parameters:
    model (`DenoiserModel`): a k-diffusion wrapped denoiser model (e.g. a subclass of DiscreteEpsDDPMDenoiser)
    x (`FloatTensor`): noised latents (or RGB I suppose), e.g. torch.randn((B, C, H, W)) * sigma[0]
    sigma (`FloatTensor`): timestep to denoise
    sigma_next (`FloatTensor`): timestep+1 to denoise
    c2 (`float`, *optional*, defaults to .5): partial step size for solving ODE. .5 = midpoint method
    extra_args (`Dict[str, Any]`, *optional*, defaults to `{}`): kwargs to pass to `model#__call__()`
    pbar (`tqdm`, *optional*, defaults to `None`): progress bar to update after each model call
    simple_phi_calc (`bool`, *optional*, defaults to `True`): True = calculate phi_i,j(-h) via simplified formulae specific to j={1,2}. False = Use general solution that works for any j. Mathematically equivalent, but could be numeric differences.
  """
  lam_next, lam = (s.log().neg() for s in (sigma_next, sigma))

  # type hints aren't strictly true regarding float vs FloatTensor.
  # everything gets promoted to `FloatTensor` after interacting with `sigma: FloatTensor`.
  # I will use float to indicate any variables which are scalars.
  h: float = lam_next - lam
  a2_1, b1, b2 = _de_second_order(h=h, c2=c2, simple_phi_calc=simple_phi_calc)
  
  denoised: FloatTensor = model(x, sigma, **extra_args)
  if pbar is not None:
    pbar.update(0.5)

  c2_h: float = c2*h

  x_2: FloatTensor = math.exp(-c2_h)*x + a2_1*h*denoised
  lam_2: float = lam + c2_h
  sigma_2: float = lam_2.neg().exp()

  denoised2: FloatTensor = model(x_2, sigma_2, **extra_args)
  if pbar is not None:
    pbar.update(0.5)

  x_next: FloatTensor = math.exp(-h)*x + h*(b1*denoised + b2*denoised2)
  
  return StepOutput(
    x_next=x_next,
    denoised=denoised,
    denoised2=denoised2,
  )
  

@no_grad()
def sample_refined_exp_s(
  model: FloatTensor,
  x: FloatTensor,
  sigmas: FloatTensor,
  denoise_to_zero: bool = True,
  extra_args: Dict[str, Any] = {},
  callback: Optional[RefinedExpCallback] = None,
  disable: Optional[bool] = None,
  ita: FloatTensor = torch.zeros((1,)),
  c2 = .5,
  noise_sampler: NoiseSampler = torch.randn_like,
  simple_phi_calc = True,
):
  """
  Refined Exponential Solver (S).
  Algorithm 2 "RES Single-Step Sampler" with Algorithm 1 second-order step
  https://arxiv.org/abs/2308.02157

  Parameters:
    model (`DenoiserModel`): a k-diffusion wrapped denoiser model (e.g. a subclass of DiscreteEpsDDPMDenoiser)
    x (`FloatTensor`): noised latents (or RGB I suppose), e.g. torch.randn((B, C, H, W)) * sigma[0]
    sigmas (`FloatTensor`): sigmas (ideally an exponential schedule!) e.g. get_sigmas_exponential(n=25, sigma_min=model.sigma_min, sigma_max=model.sigma_max)
    denoise_to_zero (`bool`, *optional*, defaults to `True`): whether to finish with a first-order step down to 0 (rather than stopping at sigma_min). True = fully denoise image. False = match Algorithm 2 in paper
    extra_args (`Dict[str, Any]`, *optional*, defaults to `{}`): kwargs to pass to `model#__call__()`
    callback (`RefinedExpCallback`, *optional*, defaults to `None`): you can supply this callback to see the intermediate denoising results, e.g. to preview each step of the denoising process
    disable (`bool`, *optional*, defaults to `False`): whether to hide `tqdm`'s progress bar animation from being printed
    ita (`FloatTensor`, *optional*, defaults to 0.): degree of stochasticity, η, for each timestep. tensor shape must be broadcastable to 1-dimensional tensor with length `len(sigmas) if denoise_to_zero else len(sigmas)-1`. each element should be from 0 to 1.
    c2 (`float`, *optional*, defaults to .5): partial step size for solving ODE. .5 = midpoint method
    noise_sampler (`NoiseSampler`, *optional*, defaults to `torch.randn_like`): method used for adding noise
    simple_phi_calc (`bool`, *optional*, defaults to `True`): True = calculate phi_i,j(-h) via simplified formulae specific to j={1,2}. False = Use general solution that works for any j. Mathematically equivalent, but could be numeric differences.
  """
  # assert sigmas[-1] == 0
  ita = ita.to(x.device)
  with tqdm(disable=disable, total=len(sigmas)-(1 if denoise_to_zero else 2)) as pbar:
    for i, (sigma, sigma_next) in enumerate(pairwise(sigmas[:-1].split(1))):
      eps: FloatTensor = noise_sampler(x)
      sigma_hat = sigma * (1 + ita)
      x_hat = x + (sigma_hat ** 2 - sigma ** 2) ** .5 * eps
      x_next, denoised, denoised2 = _refined_exp_sosu_step(
        model,
        x_hat,
        sigma_hat,
        sigma_next,
        c2=c2,
        extra_args=extra_args,
        pbar=pbar,
        simple_phi_calc=simple_phi_calc,
      )
      if callback is not None:
        payload = RefinedExpCallbackPayload(
          x=x,
          i=i,
          sigma=sigma,
          sigma_hat=sigma_hat,
          denoised=denoised,
          denoised2=denoised2,
        )
        callback(payload)
      x = x_next
    if denoise_to_zero:
      eps: FloatTensor = noise_sampler(x)
      sigma_hat = sigma * (1 + ita)
      x_hat = x + (sigma_hat ** 2 - sigma ** 2) ** .5 * eps
      x_next: FloatTensor = model(x_hat, sigma.to(x_hat.device))
      pbar.update()
      x = x_next
  return x