File size: 9,537 Bytes
6fecfbe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 |
import torch
from torch import no_grad, FloatTensor
from tqdm import tqdm
from typing import Protocol, Optional, Dict, Any, TypedDict, NamedTuple, Union, List
import math
from itertools import tee
def pairwise(iterable):
"s -> (s0, s1), (s1, s2), (s2, s3), ..."
a, b = tee(iterable)
next(b, None)
return zip(a, b)
class DenoiserModel(Protocol):
def __call__(self, x: FloatTensor, t: FloatTensor, *args, **kwargs) -> FloatTensor: ...
class RefinedExpCallbackPayload(TypedDict):
x: FloatTensor
i: int
sigma: FloatTensor
sigma_hat: FloatTensor
class RefinedExpCallback(Protocol):
def __call__(self, payload: RefinedExpCallbackPayload) -> None: ...
class NoiseSampler(Protocol):
def __call__(self, x: FloatTensor) -> FloatTensor: ...
class StepOutput(NamedTuple):
x_next: FloatTensor
denoised: FloatTensor
denoised2: FloatTensor
def _gamma(
n: int,
) -> int:
"""
https://en.wikipedia.org/wiki/Gamma_function
for every positive integer n,
Γ(n) = (n-1)!
"""
return math.factorial(n-1)
def _incomplete_gamma(
s: int,
x: float,
gamma_s: Optional[int] = None
) -> float:
"""
https://en.wikipedia.org/wiki/Incomplete_gamma_function#Special_values
if s is a positive integer,
Γ(s, x) = (s-1)!*∑{k=0..s-1}(x^k/k!)
"""
if gamma_s is None:
gamma_s = _gamma(s)
sum_: float = 0
# {k=0..s-1} inclusive
for k in range(s):
numerator: float = x**k
denom: int = math.factorial(k)
quotient: float = numerator/denom
sum_ += quotient
incomplete_gamma_: float = sum_ * math.exp(-x) * gamma_s
return incomplete_gamma_
# by Katherine Crowson
def _phi_1(neg_h: FloatTensor):
return torch.nan_to_num(torch.expm1(neg_h) / neg_h, nan=1.0)
# by Katherine Crowson
def _phi_2(neg_h: FloatTensor):
return torch.nan_to_num((torch.expm1(neg_h) - neg_h) / neg_h**2, nan=0.5)
# by Katherine Crowson
def _phi_3(neg_h: FloatTensor):
return torch.nan_to_num((torch.expm1(neg_h) - neg_h - neg_h**2 / 2) / neg_h**3, nan=1 / 6)
def _phi(
neg_h: float,
j: int,
):
"""
For j={1,2,3}: you could alternatively use Kat's phi_1, phi_2, phi_3 which perform fewer steps
Lemma 1
https://arxiv.org/abs/2308.02157
ϕj(-h) = 1/h^j*∫{0..h}(e^(τ-h)*(τ^(j-1))/((j-1)!)dτ)
https://www.wolframalpha.com/input?i=integrate+e%5E%28%CF%84-h%29*%28%CF%84%5E%28j-1%29%2F%28j-1%29%21%29d%CF%84
= 1/h^j*[(e^(-h)*(-τ)^(-j)*τ(j))/((j-1)!)]{0..h}
https://www.wolframalpha.com/input?i=integrate+e%5E%28%CF%84-h%29*%28%CF%84%5E%28j-1%29%2F%28j-1%29%21%29d%CF%84+between+0+and+h
= 1/h^j*((e^(-h)*(-h)^(-j)*h^j*(Γ(j)-Γ(j,-h)))/(j-1)!)
= (e^(-h)*(-h)^(-j)*h^j*(Γ(j)-Γ(j,-h))/((j-1)!*h^j)
= (e^(-h)*(-h)^(-j)*(Γ(j)-Γ(j,-h))/(j-1)!
= (e^(-h)*(-h)^(-j)*(Γ(j)-Γ(j,-h))/Γ(j)
= (e^(-h)*(-h)^(-j)*(1-Γ(j,-h)/Γ(j))
requires j>0
"""
assert j > 0
gamma_: float = _gamma(j)
incomp_gamma_: float = _incomplete_gamma(j, neg_h, gamma_s=gamma_)
phi_: float = math.exp(neg_h) * neg_h**-j * (1-incomp_gamma_/gamma_)
return phi_
class RESDECoeffsSecondOrder(NamedTuple):
a2_1: float
b1: float
b2: float
def _de_second_order(
h: float,
c2: float,
simple_phi_calc = False,
) -> RESDECoeffsSecondOrder:
"""
Table 3
https://arxiv.org/abs/2308.02157
ϕi,j := ϕi,j(-h) = ϕi(-cj*h)
a2_1 = c2ϕ1,2
= c2ϕ1(-c2*h)
b1 = ϕ1 - ϕ2/c2
"""
if simple_phi_calc:
# Kat computed simpler expressions for phi for cases j={1,2,3}
a2_1: float = c2 * _phi_1(-c2*h)
phi1: float = _phi_1(-h)
phi2: float = _phi_2(-h)
else:
# I computed general solution instead.
# they're close, but there are slight differences. not sure which would be more prone to numerical error.
a2_1: float = c2 * _phi(j=1, neg_h=-c2*h)
phi1: float = _phi(j=1, neg_h=-h)
phi2: float = _phi(j=2, neg_h=-h)
phi2_c2: float = phi2/c2
b1: float = phi1 - phi2_c2
b2: float = phi2_c2
return RESDECoeffsSecondOrder(
a2_1=a2_1,
b1=b1,
b2=b2,
)
def _refined_exp_sosu_step(
model: DenoiserModel,
x: FloatTensor,
sigma: FloatTensor,
sigma_next: FloatTensor,
c2 = 0.5,
extra_args: Dict[str, Any] = {},
pbar: Optional[tqdm] = None,
simple_phi_calc = False,
) -> StepOutput:
"""
Algorithm 1 "RES Second order Single Update Step with c2"
https://arxiv.org/abs/2308.02157
Parameters:
model (`DenoiserModel`): a k-diffusion wrapped denoiser model (e.g. a subclass of DiscreteEpsDDPMDenoiser)
x (`FloatTensor`): noised latents (or RGB I suppose), e.g. torch.randn((B, C, H, W)) * sigma[0]
sigma (`FloatTensor`): timestep to denoise
sigma_next (`FloatTensor`): timestep+1 to denoise
c2 (`float`, *optional*, defaults to .5): partial step size for solving ODE. .5 = midpoint method
extra_args (`Dict[str, Any]`, *optional*, defaults to `{}`): kwargs to pass to `model#__call__()`
pbar (`tqdm`, *optional*, defaults to `None`): progress bar to update after each model call
simple_phi_calc (`bool`, *optional*, defaults to `True`): True = calculate phi_i,j(-h) via simplified formulae specific to j={1,2}. False = Use general solution that works for any j. Mathematically equivalent, but could be numeric differences.
"""
lam_next, lam = (s.log().neg() for s in (sigma_next, sigma))
# type hints aren't strictly true regarding float vs FloatTensor.
# everything gets promoted to `FloatTensor` after interacting with `sigma: FloatTensor`.
# I will use float to indicate any variables which are scalars.
h: float = lam_next - lam
a2_1, b1, b2 = _de_second_order(h=h, c2=c2, simple_phi_calc=simple_phi_calc)
denoised: FloatTensor = model(x, sigma, **extra_args)
if pbar is not None:
pbar.update(0.5)
c2_h: float = c2*h
x_2: FloatTensor = math.exp(-c2_h)*x + a2_1*h*denoised
lam_2: float = lam + c2_h
sigma_2: float = lam_2.neg().exp()
denoised2: FloatTensor = model(x_2, sigma_2, **extra_args)
if pbar is not None:
pbar.update(0.5)
x_next: FloatTensor = math.exp(-h)*x + h*(b1*denoised + b2*denoised2)
return StepOutput(
x_next=x_next,
denoised=denoised,
denoised2=denoised2,
)
@no_grad()
def sample_refined_exp_s(
model: FloatTensor,
x: FloatTensor,
sigmas: FloatTensor,
denoise_to_zero: bool = True,
extra_args: Dict[str, Any] = {},
callback: Optional[RefinedExpCallback] = None,
disable: Optional[bool] = None,
ita: FloatTensor = torch.zeros((1,)),
c2 = .5,
noise_sampler: NoiseSampler = torch.randn_like,
simple_phi_calc = True,
):
"""
Refined Exponential Solver (S).
Algorithm 2 "RES Single-Step Sampler" with Algorithm 1 second-order step
https://arxiv.org/abs/2308.02157
Parameters:
model (`DenoiserModel`): a k-diffusion wrapped denoiser model (e.g. a subclass of DiscreteEpsDDPMDenoiser)
x (`FloatTensor`): noised latents (or RGB I suppose), e.g. torch.randn((B, C, H, W)) * sigma[0]
sigmas (`FloatTensor`): sigmas (ideally an exponential schedule!) e.g. get_sigmas_exponential(n=25, sigma_min=model.sigma_min, sigma_max=model.sigma_max)
denoise_to_zero (`bool`, *optional*, defaults to `True`): whether to finish with a first-order step down to 0 (rather than stopping at sigma_min). True = fully denoise image. False = match Algorithm 2 in paper
extra_args (`Dict[str, Any]`, *optional*, defaults to `{}`): kwargs to pass to `model#__call__()`
callback (`RefinedExpCallback`, *optional*, defaults to `None`): you can supply this callback to see the intermediate denoising results, e.g. to preview each step of the denoising process
disable (`bool`, *optional*, defaults to `False`): whether to hide `tqdm`'s progress bar animation from being printed
ita (`FloatTensor`, *optional*, defaults to 0.): degree of stochasticity, η, for each timestep. tensor shape must be broadcastable to 1-dimensional tensor with length `len(sigmas) if denoise_to_zero else len(sigmas)-1`. each element should be from 0 to 1.
c2 (`float`, *optional*, defaults to .5): partial step size for solving ODE. .5 = midpoint method
noise_sampler (`NoiseSampler`, *optional*, defaults to `torch.randn_like`): method used for adding noise
simple_phi_calc (`bool`, *optional*, defaults to `True`): True = calculate phi_i,j(-h) via simplified formulae specific to j={1,2}. False = Use general solution that works for any j. Mathematically equivalent, but could be numeric differences.
"""
# assert sigmas[-1] == 0
ita = ita.to(x.device)
with tqdm(disable=disable, total=len(sigmas)-(1 if denoise_to_zero else 2)) as pbar:
for i, (sigma, sigma_next) in enumerate(pairwise(sigmas[:-1].split(1))):
eps: FloatTensor = noise_sampler(x)
sigma_hat = sigma * (1 + ita)
x_hat = x + (sigma_hat ** 2 - sigma ** 2) ** .5 * eps
x_next, denoised, denoised2 = _refined_exp_sosu_step(
model,
x_hat,
sigma_hat,
sigma_next,
c2=c2,
extra_args=extra_args,
pbar=pbar,
simple_phi_calc=simple_phi_calc,
)
if callback is not None:
payload = RefinedExpCallbackPayload(
x=x,
i=i,
sigma=sigma,
sigma_hat=sigma_hat,
denoised=denoised,
denoised2=denoised2,
)
callback(payload)
x = x_next
if denoise_to_zero:
eps: FloatTensor = noise_sampler(x)
sigma_hat = sigma * (1 + ita)
x_hat = x + (sigma_hat ** 2 - sigma ** 2) ** .5 * eps
x_next: FloatTensor = model(x_hat, sigma.to(x_hat.device))
pbar.update()
x = x_next
return x |