File size: 20,409 Bytes
6fecfbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
"""

Custom nodes for SDXL in ComfyUI

MIT License

Copyright (c) 2023 Searge

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

"""

import warnings

import comfy
from comfy.ldm.modules.diffusionmodules.openaimodel import UNetModel
from comfy.model_management import batch_area_memory, get_torch_device, load_models_gpu
import comfy.sample
import comfy.samplers
import comfy.utils
import latent_preview
import torch
from torch.nn.functional import pad

from ..nodes.interposer import VyroLatentInterposer


convert_latent = VyroLatentInterposer().convert

def next_multiple_of(value, factor):
    return int(int((value + factor - 1) // factor) * factor)


def get_image_size(image):
    if image is None:
        return (None, None,)

    (_, height, width, _) = image.shape

    return (width, height,)


def get_mask_size(mask):
    if mask is None:
        return (None, None,)

    (height, width) = mask.shape

    return (width, height,)


def get_latent_size(latent):
    if latent is None or "samples" not in latent:
        return (None, None,)

    samples = latent["samples"]

    (_, _, height, width) = samples.shape

    return (width, height,)


def get_latent_pixel_size(latent):
    (width, height) = get_latent_size(latent)

    if width is None or height is None:
        return (None, None,)

    return (width * 8, height * 8,)


def slerp(factor, input1, input2):
    dims = input1.shape

    input1 = input1.reshape(dims[0], -1)
    input2 = input2.reshape(dims[0], -1)

    input1_norm = input1 / torch.norm(input1, dim=1, keepdim=True)
    input2_norm = input2 / torch.norm(input2, dim=1, keepdim=True)

    input1_norm[input1_norm != input1_norm] = 0.0
    input2_norm[input2_norm != input2_norm] = 0.0

    omega = torch.acos((input1_norm * input2_norm).sum(1))
    sin_omega = torch.sin(omega)

    result = ((torch.sin((1.0 - factor) * omega) / sin_omega).unsqueeze(1) * input1
              + (torch.sin(factor * omega) / sin_omega).unsqueeze(1) * input2)

    return result.reshape(dims)


def slerp_latents(latent1, latent2, factor):
    result = slerp(factor, latent1.clone(), latent2.clone())
    return result


def bilateral_blur(inp, kernel_size, sigma_color, sigma_space, border_type='reflect', color_distance_type='l1'):
    if isinstance(sigma_color, torch.Tensor):
        sigma_color = sigma_color.to(device=inp.device, dtype=inp.dtype).view(-1, 1, 1, 1, 1)

    ky, kx = _unpack_2d_ks(kernel_size)

    pad_y, pad_x = (ky - 1) // 2, (kx - 1) // 2

    padded_input = pad(inp, (pad_x, pad_x, pad_y, pad_y), mode=border_type)
    unfolded_input = padded_input.unfold(2, ky, 1).unfold(3, kx, 1).flatten(-2)  # (B, C, H, W, Ky x Kx)

    diff = unfolded_input - inp.unsqueeze(-1)
    if color_distance_type == "l1":
        color_distance_sq = diff.abs().sum(1, keepdim=True).square()
    elif color_distance_type == "l2":
        color_distance_sq = diff.square().sum(1, keepdim=True)
    else:
        color_distance_sq = diff.abs().sum(1, keepdim=True).square()

    color_kernel = (-0.5 / sigma_color ** 2 * color_distance_sq).exp()  # (B, 1, H, W, Ky x Kx)

    space_kernel = get_gaussian_kernel2d(kernel_size, sigma_space, inp.device, inp.dtype)
    space_kernel = space_kernel.view(-1, 1, 1, 1, kx * ky)

    kernel = space_kernel * color_kernel
    out = (unfolded_input * kernel).sum(-1) / kernel.sum(-1)
    return out


def _unpack_2d_ks(kernel_size):
    if isinstance(kernel_size, int):
        ky = kx = kernel_size
    else:
        ky, kx = kernel_size

    return (int(ky), int(kx))


def get_gaussian_kernel2d(kernel_size, sigma, device, dtype):
    if isinstance(sigma, tuple):
        sigma = torch.tensor([sigma], device=device, dtype=dtype)
    else:
        sigma = torch.tensor([[sigma, sigma]], device=device, dtype=dtype)

    ksize_y, ksize_x = _unpack_2d_ks(kernel_size)
    sigma_y, sigma_x = sigma[:, 0, None], sigma[:, 1, None]

    kernel_y = get_gaussian_kernel1d(ksize_y, sigma_y, device, dtype)[..., None]
    kernel_x = get_gaussian_kernel1d(ksize_x, sigma_x, device, dtype)[..., None]

    return kernel_y * kernel_x.view(-1, 1, ksize_x)


def get_gaussian_kernel1d(kernel_size, sigma, device, dtype):
    if isinstance(sigma, float):
        sigma = torch.tensor([[sigma]], device=device, dtype=dtype)

    batch_size = sigma.shape[0]

    x = (torch.arange(kernel_size, device=sigma.device, dtype=sigma.dtype) - kernel_size // 2).expand(batch_size, -1)

    if kernel_size % 2 == 0:
        x = x + 0.5

    gauss = torch.exp(-x.pow(2.0) / (2 * sigma.pow(2.0)))

    return gauss / gauss.sum(-1, keepdim=True)



# --------------------------------------------------------------------------------

class CfgMethods:
    INTERPOLATE = "interpolate"
    RESCALE = "rescale"
    TONEMAP = "tonemap"


# --------------------------------------------------------------------------------

def unet_function(func, params):
    cond_or_uncond = params["cond_or_uncond"]

    input_x = params["input"]
    timestep = params["timestep"]
    c = params["c"]

    transformer_options = c["transformer_options"]
    transformer_options["uc_mask"] = torch.Tensor(cond_or_uncond).to(input_x).float()[:, None, None, None]
    # duplicate for each batch
    batch_size = input_x.shape[0] / 2
    if batch_size > 1:
        transformer_options["uc_mask"] = transformer_options["uc_mask"].repeat_interleave(int(batch_size), dim=0)
    return func(input_x, timestep, **c)


# --------------------------------------------------------------------------------

def new_unet_forward(self, x, timesteps=None, context=None, y=None, control=None, transformer_options={}, **kwargs):
    x0 = old_unet_forward(self, x, timesteps, context, y, control, transformer_options, **kwargs)

    # do filtering here
    if "uc_mask" in transformer_options:
        uc_mask = transformer_options["uc_mask"]

        sharpness = 2.0
        alpha = 1.0 - (timesteps / 999.0)[:, None, None, None].clone()
        alpha *= 0.001 * sharpness
        degraded_x0 = bilateral_blur(x0, (13, 13), 3.0, 3.0) * alpha + x0 * (1.0 - alpha)
        x0 = x0 * uc_mask + degraded_x0 * (1.0 - uc_mask)

    return x0


old_unet_forward = UNetModel.forward
UNetModel.forward = new_unet_forward


# --------------------------------------------------------------------------------

def sdxl_sample(base_model, refiner_model, noise, base_steps, refiner_steps, cfg, sampler_name, scheduler,
                base_positive, base_negative, refiner_positive, refiner_negative, latent_image, batch_inds,
                denoise=1.0, start_step=None, last_step=None, force_full_denoise=False, noise_mask=None, sigmas=None,
                base_callback=None, refiner_callback=None, disable_pbar=False, seed=None, cfg_method=None,
                dynamic_base_cfg=0.0, dynamic_refiner_cfg=0.0, refiner_detail_boost=0.0, restart_wrapper=None):
    device = get_torch_device()

    if noise_mask is not None:
        noise_mask = comfy.sample.prepare_mask(noise_mask, noise.shape, device)

    steps = base_steps + refiner_steps

    def base_cfg_callback(args):
        (cond, uncond, cond_scale, timestep) = (args["cond"], args["uncond"], args["cond_scale"], args["timestep"])

        dyn_cfg = dynamic_base_cfg

        if dyn_cfg < 0.0:
            dyn_cfg = -dyn_cfg
            ts = 1.0 - float(timestep) / 999.0
        else:
            ts = float(timestep) / 999.0

        if dyn_cfg > 0.0999:
            cond_scale = cond_scale * ts + (cond_scale * (1.0 - dyn_cfg) + dyn_cfg) * (1.0 - ts)

        return uncond + (cond - uncond) * cond_scale

    def base_rescale_cfg(args):
        multiplier = dynamic_base_cfg if dynamic_base_cfg >= 0.0 else -dynamic_base_cfg

        cond = args["cond"]
        uncond = args["uncond"]
        cond_scale = args["cond_scale"]

        x_cfg = uncond + cond_scale * (cond - uncond)
        ro_pos = torch.std(cond, dim=(1, 2, 3), keepdim=True)
        ro_cfg = torch.std(x_cfg, dim=(1, 2, 3), keepdim=True)

        x_rescaled = x_cfg * (ro_pos / ro_cfg)
        x_final = multiplier * x_rescaled + (1.0 - multiplier) * x_cfg

        return x_final

    def base_tonemap_reinhard(args):
        multiplier = dynamic_base_cfg if dynamic_base_cfg >= 0.0 else -dynamic_base_cfg

        cond = args["cond"]
        uncond = args["uncond"]
        cond_scale = args["cond_scale"]

        noise_pred = (cond - uncond)
        noise_pred_vector_magnitude = (torch.linalg.vector_norm(noise_pred, dim=(1)) + 0.0000000001)[:, None]
        noise_pred /= noise_pred_vector_magnitude

        mean = torch.mean(noise_pred_vector_magnitude, dim=(1, 2, 3), keepdim=True)
        std = torch.std(noise_pred_vector_magnitude, dim=(1, 2, 3), keepdim=True)

        top = (std * 3 + mean) * multiplier

        noise_pred_vector_magnitude *= (1.0 / top)
        new_magnitude = noise_pred_vector_magnitude / (noise_pred_vector_magnitude + 1.0)
        new_magnitude *= top

        return uncond + noise_pred * new_magnitude * cond_scale

    base_model = base_model.clone()
    base_model.set_model_unet_function_wrapper(unet_function)

    if cfg_method is not None:
        if cfg_method == CfgMethods.INTERPOLATE:
            base_model.set_model_sampler_cfg_function(base_cfg_callback)
        elif cfg_method == CfgMethods.RESCALE and dynamic_base_cfg > 0.0:
            base_model.set_model_sampler_cfg_function(base_rescale_cfg)
        elif cfg_method == CfgMethods.TONEMAP and dynamic_base_cfg > 0.0:
            base_model.set_model_sampler_cfg_function(base_tonemap_reinhard)

    # base_models = comfy.sample.get_additional_models(base_positive, base_negative)
    # load_models_gpu([base_model] + base_models, batch_area_memory(noise.shape[0] * noise.shape[2] * noise.shape[3]))
    
    base_models, inference_memory = comfy.sample.get_additional_models(base_positive, base_negative,
                                                                       base_model.model_dtype())

    memory_required = batch_area_memory(noise.shape[0] * noise.shape[2] * noise.shape[3]) + inference_memory
    load_models_gpu([base_model] + base_models, memory_required)

    real_base_model = base_model.model

    original_latent = latent_image

    noise = noise.to(device)
    latent_image = latent_image.to(device)

    pos_base_copy = comfy.sample.broadcast_cond(base_positive, noise.shape[0], device)
    neg_base_copy = comfy.sample.broadcast_cond(base_negative, noise.shape[0], device)

    base_sampler = comfy.samplers.KSampler(real_base_model, steps=steps, device=device, sampler=sampler_name,
                                           scheduler=scheduler, denoise=denoise, model_options=base_model.model_options)

    base_samples = base_sampler.sample(noise, pos_base_copy, neg_base_copy, cfg=cfg, latent_image=latent_image,
                                       start_step=start_step, last_step=base_steps, force_full_denoise=False,
                                       denoise_mask=noise_mask, sigmas=sigmas, callback=base_callback,
                                       disable_pbar=disable_pbar, seed=seed)

    comfy.sample.cleanup_additional_models(base_models)

    noise = torch.zeros(base_samples.size(), dtype=base_samples.dtype, layout=base_samples.layout, device=device)

    if refiner_steps < 1:
        return base_samples.cpu()

    if refiner_detail_boost > 0.0:
        new_noise = comfy.sample.prepare_noise(original_latent, seed + 1, batch_inds).to(device)
        new_noise /= real_base_model.latent_format.scale_factor

        factor = base_sampler.sigmas[-refiner_steps - 1]
        new_noise = new_noise * factor

        noised_samples = base_samples + new_noise

        base_samples = slerp_latents(base_samples, noised_samples, refiner_detail_boost)

    if noise_mask is not None:
        latent_from_base = base_samples * noise_mask + latent_image * (1.0 - noise_mask)
    else:
        latent_from_base = base_samples

    # latent_from_base = convert_latent(latent_from_base,'xl','v1')
    # latent_from_base.to(base_samples.device)
    def refiner_cfg_callback(args):
        (cond, uncond, cond_scale, timestep) = (args["cond"], args["uncond"], args["cond_scale"], args["timestep"])

        dyn_cfg = dynamic_refiner_cfg

        if dyn_cfg < 0.0:
            dyn_cfg = -dyn_cfg
            ts = 1.0 - float(timestep) / 999.0
        else:
            ts = float(timestep) / 999.0

        if dyn_cfg > 0.0999:
            cond_scale = cond_scale * ts + (cond_scale * (1.0 - dyn_cfg) + dyn_cfg) * (1.0 - ts)

        return uncond + (cond - uncond) * cond_scale

    def refiner_rescale_cfg(args):
        multiplier = dynamic_refiner_cfg if dynamic_refiner_cfg >= 0.0 else -dynamic_refiner_cfg

        cond = args["cond"]
        uncond = args["uncond"]
        cond_scale = args["cond_scale"]

        x_cfg = uncond + cond_scale * (cond - uncond)
        ro_pos = torch.std(cond, dim=(1, 2, 3), keepdim=True)
        ro_cfg = torch.std(x_cfg, dim=(1, 2, 3), keepdim=True)

        x_rescaled = x_cfg * (ro_pos / ro_cfg)

        return multiplier * x_rescaled + (1.0 - multiplier) * x_cfg

    def refiner_tonemap_reinhard(args):
        multiplier = dynamic_refiner_cfg if dynamic_refiner_cfg >= 0.0 else -dynamic_refiner_cfg

        cond = args["cond"]
        uncond = args["uncond"]
        cond_scale = args["cond_scale"]

        noise_pred = (cond - uncond)
        noise_pred_vector_magnitude = (torch.linalg.vector_norm(noise_pred, dim=(1)) + 0.0000000001)[:, None]
        noise_pred /= noise_pred_vector_magnitude

        mean = torch.mean(noise_pred_vector_magnitude, dim=(1, 2, 3), keepdim=True)
        std = torch.std(noise_pred_vector_magnitude, dim=(1, 2, 3), keepdim=True)

        top = (std * 3 + mean) * multiplier

        noise_pred_vector_magnitude *= (1.0 / top)
        new_magnitude = noise_pred_vector_magnitude / (noise_pred_vector_magnitude + 1.0)
        new_magnitude *= top

        return uncond + noise_pred * new_magnitude * cond_scale

    refiner_model = refiner_model.clone()
    refiner_model.set_model_unet_function_wrapper(unet_function)

    if cfg_method is not None:
        if cfg_method == CfgMethods.INTERPOLATE:
            refiner_model.set_model_sampler_cfg_function(refiner_cfg_callback)
        elif cfg_method == CfgMethods.RESCALE and dynamic_refiner_cfg > 0.0:
            refiner_model.set_model_sampler_cfg_function(refiner_rescale_cfg)
        elif cfg_method == CfgMethods.TONEMAP and dynamic_refiner_cfg > 0.0:
            refiner_model.set_model_sampler_cfg_function(refiner_tonemap_reinhard)

    # refiner_models = comfy.sample.get_additional_models(base_positive, base_negative)
    # load_models_gpu([refiner_model] + refiner_models, batch_area_memory(noise.shape[0] * noise.shape[2] * noise.shape[3]))
    
    refiner_models, inference_memory = comfy.sample.get_additional_models(refiner_positive, refiner_negative,
                                                                          refiner_model.model_dtype())

    memory_required = batch_area_memory(noise.shape[0] * noise.shape[2] * noise.shape[3]) + inference_memory
    load_models_gpu([refiner_model] + refiner_models, memory_required)

    real_refiner_model = refiner_model.model

    pos_refiner_copy = comfy.sample.broadcast_cond(refiner_positive, noise.shape[0], device)
    neg_refiner_copy = comfy.sample.broadcast_cond(refiner_negative, noise.shape[0], device)
    
    if restart_wrapper is not None:
        restart_wrapper.__class__.refiner_stage = True
        
    refiner_sampler = comfy.samplers.KSampler(real_refiner_model, steps=steps, device=device, sampler=sampler_name,
                                              scheduler=scheduler, denoise=denoise,
                                              model_options=refiner_model.model_options)

    refiner_samples = refiner_sampler.sample(noise, pos_refiner_copy, neg_refiner_copy, cfg=cfg,
                                             latent_image=latent_from_base, start_step=base_steps, last_step=last_step,
                                             force_full_denoise=force_full_denoise,
                                             denoise_mask=noise_mask, sigmas=sigmas, callback=refiner_callback,
                                             disable_pbar=disable_pbar, seed=seed)

    refiner_samples = refiner_samples.cpu()

    comfy.sample.cleanup_additional_models(refiner_models)

    return refiner_samples


# --------------------------------------------------------------------------------

def sdxl_ksampler(base_model, refiner_model, seed, base_steps, refiner_steps, cfg, sampler_name, scheduler,
                  base_positive, base_negative, refiner_positive, refiner_negative, latent, denoise=1.0,
                  disable_noise=False, start_step=None, last_step=None, force_full_denoise=False, cfg_method=None,
                  dynamic_base_cfg=0.0, dynamic_refiner_cfg=0.0, refiner_detail_boost=0.0, restart_wrapper=None):

    # print(f"\n\nBase Model Type: {type(base_model.model.diffusion_model)}")

    device = get_torch_device()
    latent_image = latent["samples"]

    batch_inds = None
    if disable_noise:
        noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu")
    else:
        batch_inds = latent["batch_index"] if "batch_index" in latent else None
        noise = comfy.sample.prepare_noise(latent_image, seed, batch_inds)

    noise_mask = None
    if "noise_mask" in latent:
        noise_mask = latent["noise_mask"]

    preview_format = "JPEG"
    if preview_format not in ["JPEG", "PNG"]:
        preview_format = "JPEG"

    base_previewer = latent_preview.get_previewer(device, base_model.model.latent_format)
    refiner_previewer = None
    if refiner_model is not None:
        refiner_previewer = latent_preview.get_previewer(device, refiner_model.model.latent_format)

    steps = base_steps + refiner_steps
    pbar = comfy.utils.ProgressBar(steps)

    def base_callback(step, x0, x, total_steps):
        preview_bytes = None
        if base_previewer:
            preview_bytes = base_previewer.decode_latent_to_preview_image(preview_format, x0)
        pbar.update_absolute(step + 1, total_steps, preview_bytes)

    def refiner_callback(step, x0, x, total_steps):
        preview_bytes = None
        if refiner_previewer:
            preview_bytes = refiner_previewer.decode_latent_to_preview_image(preview_format, x0)
        pbar.update_absolute(step + 1, total_steps, preview_bytes)

    with warnings.catch_warnings():
        warnings.simplefilter("ignore")
        samples = sdxl_sample(base_model, refiner_model, noise, base_steps, refiner_steps, cfg, sampler_name, scheduler,
                              base_positive, base_negative, refiner_positive, refiner_negative, latent_image,
                              batch_inds, denoise=denoise, start_step=start_step, last_step=last_step,
                              force_full_denoise=force_full_denoise, noise_mask=noise_mask,
                              base_callback=base_callback, refiner_callback=refiner_callback, seed=seed,
                              dynamic_base_cfg=dynamic_base_cfg, dynamic_refiner_cfg=dynamic_refiner_cfg,
                              cfg_method=cfg_method, refiner_detail_boost=refiner_detail_boost,restart_wrapper=restart_wrapper)
    
    out = latent.copy()
    out["samples"] = samples
    return (out,)