|
from abc import ABC, abstractmethod |
|
from typing import Tuple |
|
|
|
import torch |
|
from einops import rearrange |
|
from torch import Tensor |
|
|
|
|
|
def latent_to_pixel_coords( |
|
latent_coords: Tensor, scale_factors: Tuple[int, int, int], causal_fix: bool = False |
|
) -> Tensor: |
|
""" |
|
Converts latent coordinates to pixel coordinates by scaling them according to the VAE's |
|
configuration. |
|
Args: |
|
latent_coords (Tensor): A tensor of shape [batch_size, 3, num_latents] |
|
containing the latent corner coordinates of each token. |
|
scale_factors (Tuple[int, int, int]): The scale factors of the VAE's latent space. |
|
causal_fix (bool): Whether to take into account the different temporal scale |
|
of the first frame. Default = False for backwards compatibility. |
|
Returns: |
|
Tensor: A tensor of pixel coordinates corresponding to the input latent coordinates. |
|
""" |
|
pixel_coords = ( |
|
latent_coords |
|
* torch.tensor(scale_factors, device=latent_coords.device)[None, :, None] |
|
) |
|
if causal_fix: |
|
|
|
pixel_coords[:, 0] = (pixel_coords[:, 0] + 1 - scale_factors[0]).clamp(min=0) |
|
return pixel_coords |
|
|
|
|
|
class Patchifier(ABC): |
|
def __init__(self, patch_size: int): |
|
super().__init__() |
|
self._patch_size = (1, patch_size, patch_size) |
|
|
|
@abstractmethod |
|
def patchify( |
|
self, latents: Tensor, frame_rates: Tensor, scale_grid: bool |
|
) -> Tuple[Tensor, Tensor]: |
|
pass |
|
|
|
@abstractmethod |
|
def unpatchify( |
|
self, |
|
latents: Tensor, |
|
output_height: int, |
|
output_width: int, |
|
output_num_frames: int, |
|
out_channels: int, |
|
) -> Tuple[Tensor, Tensor]: |
|
pass |
|
|
|
@property |
|
def patch_size(self): |
|
return self._patch_size |
|
|
|
def get_latent_coords( |
|
self, latent_num_frames, latent_height, latent_width, batch_size, device |
|
): |
|
""" |
|
Return a tensor of shape [batch_size, 3, num_patches] containing the |
|
top-left corner latent coordinates of each latent patch. |
|
The tensor is repeated for each batch element. |
|
""" |
|
latent_sample_coords = torch.meshgrid( |
|
torch.arange(0, latent_num_frames, self._patch_size[0], device=device), |
|
torch.arange(0, latent_height, self._patch_size[1], device=device), |
|
torch.arange(0, latent_width, self._patch_size[2], device=device), |
|
indexing="ij", |
|
) |
|
latent_sample_coords = torch.stack(latent_sample_coords, dim=0) |
|
latent_coords = latent_sample_coords.unsqueeze(0).repeat(batch_size, 1, 1, 1, 1) |
|
latent_coords = rearrange( |
|
latent_coords, "b c f h w -> b c (f h w)", b=batch_size |
|
) |
|
return latent_coords |
|
|
|
|
|
class SymmetricPatchifier(Patchifier): |
|
def patchify( |
|
self, |
|
latents: Tensor, |
|
) -> Tuple[Tensor, Tensor]: |
|
b, _, f, h, w = latents.shape |
|
latent_coords = self.get_latent_coords(f, h, w, b, latents.device) |
|
latents = rearrange( |
|
latents, |
|
"b c (f p1) (h p2) (w p3) -> b (f h w) (c p1 p2 p3)", |
|
p1=self._patch_size[0], |
|
p2=self._patch_size[1], |
|
p3=self._patch_size[2], |
|
) |
|
return latents, latent_coords |
|
|
|
def unpatchify( |
|
self, |
|
latents: Tensor, |
|
output_height: int, |
|
output_width: int, |
|
output_num_frames: int, |
|
out_channels: int, |
|
) -> Tuple[Tensor, Tensor]: |
|
output_height = output_height // self._patch_size[1] |
|
output_width = output_width // self._patch_size[2] |
|
latents = rearrange( |
|
latents, |
|
"b (f h w) (c p q) -> b c f (h p) (w q) ", |
|
f=output_num_frames, |
|
h=output_height, |
|
w=output_width, |
|
p=self._patch_size[1], |
|
q=self._patch_size[2], |
|
) |
|
return latents |
|
|