import torch from torch import no_grad, FloatTensor from tqdm import tqdm from typing import Protocol, Optional, Dict, Any, TypedDict, NamedTuple, Union, List import math from itertools import tee def pairwise(iterable): "s -> (s0, s1), (s1, s2), (s2, s3), ..." a, b = tee(iterable) next(b, None) return zip(a, b) class DenoiserModel(Protocol): def __call__(self, x: FloatTensor, t: FloatTensor, *args, **kwargs) -> FloatTensor: ... class RefinedExpCallbackPayload(TypedDict): x: FloatTensor i: int sigma: FloatTensor sigma_hat: FloatTensor class RefinedExpCallback(Protocol): def __call__(self, payload: RefinedExpCallbackPayload) -> None: ... class NoiseSampler(Protocol): def __call__(self, x: FloatTensor) -> FloatTensor: ... class StepOutput(NamedTuple): x_next: FloatTensor denoised: FloatTensor denoised2: FloatTensor def _gamma( n: int, ) -> int: """ https://en.wikipedia.org/wiki/Gamma_function for every positive integer n, Γ(n) = (n-1)! """ return math.factorial(n-1) def _incomplete_gamma( s: int, x: float, gamma_s: Optional[int] = None ) -> float: """ https://en.wikipedia.org/wiki/Incomplete_gamma_function#Special_values if s is a positive integer, Γ(s, x) = (s-1)!*∑{k=0..s-1}(x^k/k!) """ if gamma_s is None: gamma_s = _gamma(s) sum_: float = 0 # {k=0..s-1} inclusive for k in range(s): numerator: float = x**k denom: int = math.factorial(k) quotient: float = numerator/denom sum_ += quotient incomplete_gamma_: float = sum_ * math.exp(-x) * gamma_s return incomplete_gamma_ # by Katherine Crowson def _phi_1(neg_h: FloatTensor): return torch.nan_to_num(torch.expm1(neg_h) / neg_h, nan=1.0) # by Katherine Crowson def _phi_2(neg_h: FloatTensor): return torch.nan_to_num((torch.expm1(neg_h) - neg_h) / neg_h**2, nan=0.5) # by Katherine Crowson def _phi_3(neg_h: FloatTensor): return torch.nan_to_num((torch.expm1(neg_h) - neg_h - neg_h**2 / 2) / neg_h**3, nan=1 / 6) def _phi( neg_h: float, j: int, ): """ For j={1,2,3}: you could alternatively use Kat's phi_1, phi_2, phi_3 which perform fewer steps Lemma 1 https://arxiv.org/abs/2308.02157 ϕj(-h) = 1/h^j*∫{0..h}(e^(τ-h)*(τ^(j-1))/((j-1)!)dτ) https://www.wolframalpha.com/input?i=integrate+e%5E%28%CF%84-h%29*%28%CF%84%5E%28j-1%29%2F%28j-1%29%21%29d%CF%84 = 1/h^j*[(e^(-h)*(-τ)^(-j)*τ(j))/((j-1)!)]{0..h} https://www.wolframalpha.com/input?i=integrate+e%5E%28%CF%84-h%29*%28%CF%84%5E%28j-1%29%2F%28j-1%29%21%29d%CF%84+between+0+and+h = 1/h^j*((e^(-h)*(-h)^(-j)*h^j*(Γ(j)-Γ(j,-h)))/(j-1)!) = (e^(-h)*(-h)^(-j)*h^j*(Γ(j)-Γ(j,-h))/((j-1)!*h^j) = (e^(-h)*(-h)^(-j)*(Γ(j)-Γ(j,-h))/(j-1)! = (e^(-h)*(-h)^(-j)*(Γ(j)-Γ(j,-h))/Γ(j) = (e^(-h)*(-h)^(-j)*(1-Γ(j,-h)/Γ(j)) requires j>0 """ assert j > 0 gamma_: float = _gamma(j) incomp_gamma_: float = _incomplete_gamma(j, neg_h, gamma_s=gamma_) phi_: float = math.exp(neg_h) * neg_h**-j * (1-incomp_gamma_/gamma_) return phi_ class RESDECoeffsSecondOrder(NamedTuple): a2_1: float b1: float b2: float def _de_second_order( h: float, c2: float, simple_phi_calc = False, ) -> RESDECoeffsSecondOrder: """ Table 3 https://arxiv.org/abs/2308.02157 ϕi,j := ϕi,j(-h) = ϕi(-cj*h) a2_1 = c2ϕ1,2 = c2ϕ1(-c2*h) b1 = ϕ1 - ϕ2/c2 """ if simple_phi_calc: # Kat computed simpler expressions for phi for cases j={1,2,3} a2_1: float = c2 * _phi_1(-c2*h) phi1: float = _phi_1(-h) phi2: float = _phi_2(-h) else: # I computed general solution instead. # they're close, but there are slight differences. not sure which would be more prone to numerical error. a2_1: float = c2 * _phi(j=1, neg_h=-c2*h) phi1: float = _phi(j=1, neg_h=-h) phi2: float = _phi(j=2, neg_h=-h) phi2_c2: float = phi2/c2 b1: float = phi1 - phi2_c2 b2: float = phi2_c2 return RESDECoeffsSecondOrder( a2_1=a2_1, b1=b1, b2=b2, ) def _refined_exp_sosu_step( model: DenoiserModel, x: FloatTensor, sigma: FloatTensor, sigma_next: FloatTensor, c2 = 0.5, extra_args: Dict[str, Any] = {}, pbar: Optional[tqdm] = None, simple_phi_calc = False, ) -> StepOutput: """ Algorithm 1 "RES Second order Single Update Step with c2" https://arxiv.org/abs/2308.02157 Parameters: model (`DenoiserModel`): a k-diffusion wrapped denoiser model (e.g. a subclass of DiscreteEpsDDPMDenoiser) x (`FloatTensor`): noised latents (or RGB I suppose), e.g. torch.randn((B, C, H, W)) * sigma[0] sigma (`FloatTensor`): timestep to denoise sigma_next (`FloatTensor`): timestep+1 to denoise c2 (`float`, *optional*, defaults to .5): partial step size for solving ODE. .5 = midpoint method extra_args (`Dict[str, Any]`, *optional*, defaults to `{}`): kwargs to pass to `model#__call__()` pbar (`tqdm`, *optional*, defaults to `None`): progress bar to update after each model call simple_phi_calc (`bool`, *optional*, defaults to `True`): True = calculate phi_i,j(-h) via simplified formulae specific to j={1,2}. False = Use general solution that works for any j. Mathematically equivalent, but could be numeric differences. """ lam_next, lam = (s.log().neg() for s in (sigma_next, sigma)) # type hints aren't strictly true regarding float vs FloatTensor. # everything gets promoted to `FloatTensor` after interacting with `sigma: FloatTensor`. # I will use float to indicate any variables which are scalars. h: float = lam_next - lam a2_1, b1, b2 = _de_second_order(h=h, c2=c2, simple_phi_calc=simple_phi_calc) denoised: FloatTensor = model(x, sigma, **extra_args) if pbar is not None: pbar.update(0.5) c2_h: float = c2*h x_2: FloatTensor = math.exp(-c2_h)*x + a2_1*h*denoised lam_2: float = lam + c2_h sigma_2: float = lam_2.neg().exp() denoised2: FloatTensor = model(x_2, sigma_2, **extra_args) if pbar is not None: pbar.update(0.5) x_next: FloatTensor = math.exp(-h)*x + h*(b1*denoised + b2*denoised2) return StepOutput( x_next=x_next, denoised=denoised, denoised2=denoised2, ) @no_grad() def sample_refined_exp_s( model: FloatTensor, x: FloatTensor, sigmas: FloatTensor, denoise_to_zero: bool = True, extra_args: Dict[str, Any] = {}, callback: Optional[RefinedExpCallback] = None, disable: Optional[bool] = None, ita: FloatTensor = torch.zeros((1,)), c2 = .5, noise_sampler: NoiseSampler = torch.randn_like, simple_phi_calc = True, ): """ Refined Exponential Solver (S). Algorithm 2 "RES Single-Step Sampler" with Algorithm 1 second-order step https://arxiv.org/abs/2308.02157 Parameters: model (`DenoiserModel`): a k-diffusion wrapped denoiser model (e.g. a subclass of DiscreteEpsDDPMDenoiser) x (`FloatTensor`): noised latents (or RGB I suppose), e.g. torch.randn((B, C, H, W)) * sigma[0] sigmas (`FloatTensor`): sigmas (ideally an exponential schedule!) e.g. get_sigmas_exponential(n=25, sigma_min=model.sigma_min, sigma_max=model.sigma_max) denoise_to_zero (`bool`, *optional*, defaults to `True`): whether to finish with a first-order step down to 0 (rather than stopping at sigma_min). True = fully denoise image. False = match Algorithm 2 in paper extra_args (`Dict[str, Any]`, *optional*, defaults to `{}`): kwargs to pass to `model#__call__()` callback (`RefinedExpCallback`, *optional*, defaults to `None`): you can supply this callback to see the intermediate denoising results, e.g. to preview each step of the denoising process disable (`bool`, *optional*, defaults to `False`): whether to hide `tqdm`'s progress bar animation from being printed ita (`FloatTensor`, *optional*, defaults to 0.): degree of stochasticity, η, for each timestep. tensor shape must be broadcastable to 1-dimensional tensor with length `len(sigmas) if denoise_to_zero else len(sigmas)-1`. each element should be from 0 to 1. c2 (`float`, *optional*, defaults to .5): partial step size for solving ODE. .5 = midpoint method noise_sampler (`NoiseSampler`, *optional*, defaults to `torch.randn_like`): method used for adding noise simple_phi_calc (`bool`, *optional*, defaults to `True`): True = calculate phi_i,j(-h) via simplified formulae specific to j={1,2}. False = Use general solution that works for any j. Mathematically equivalent, but could be numeric differences. """ # assert sigmas[-1] == 0 ita = ita.to(x.device) with tqdm(disable=disable, total=len(sigmas)-(1 if denoise_to_zero else 2)) as pbar: for i, (sigma, sigma_next) in enumerate(pairwise(sigmas[:-1].split(1))): eps: FloatTensor = noise_sampler(x) sigma_hat = sigma * (1 + ita) x_hat = x + (sigma_hat ** 2 - sigma ** 2) ** .5 * eps x_next, denoised, denoised2 = _refined_exp_sosu_step( model, x_hat, sigma_hat, sigma_next, c2=c2, extra_args=extra_args, pbar=pbar, simple_phi_calc=simple_phi_calc, ) if callback is not None: payload = RefinedExpCallbackPayload( x=x, i=i, sigma=sigma, sigma_hat=sigma_hat, denoised=denoised, denoised2=denoised2, ) callback(payload) x = x_next if denoise_to_zero: eps: FloatTensor = noise_sampler(x) sigma_hat = sigma * (1 + ita) x_hat = x + (sigma_hat ** 2 - sigma ** 2) ** .5 * eps x_next: FloatTensor = model(x_hat, sigma.to(x_hat.device)) pbar.update() x = x_next return x