--- license: mit base_model: indobenchmark/indobert-large-p1 tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: indobert-large-p1-reddit-indonesia-sarcastic results: [] --- # indobert-large-p1-reddit-indonesia-sarcastic This model is a fine-tuned version of [indobenchmark/indobert-large-p1](https://huggingface.co/indobenchmark/indobert-large-p1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4486 - Accuracy: 0.7911 - F1: 0.6184 - Precision: 0.5690 - Recall: 0.6771 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.4573 | 1.0 | 309 | 0.4251 | 0.7966 | 0.5684 | 0.6058 | 0.5354 | | 0.3274 | 2.0 | 618 | 0.4458 | 0.7824 | 0.5955 | 0.5567 | 0.6402 | | 0.1999 | 3.0 | 927 | 0.5890 | 0.8065 | 0.5412 | 0.6653 | 0.4561 | | 0.0864 | 4.0 | 1236 | 0.8080 | 0.8023 | 0.5536 | 0.6360 | 0.4901 | | 0.0391 | 5.0 | 1545 | 1.1299 | 0.7895 | 0.5293 | 0.6007 | 0.4731 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.1+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0