w601sxs commited on
Commit
d581bb0
·
verified ·
1 Parent(s): 5ddcdcd

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,523 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ library_name: sentence-transformers
5
+ tags:
6
+ - sentence-transformers
7
+ - sentence-similarity
8
+ - feature-extraction
9
+ - dataset_size:100K<n<1M
10
+ - loss:MSELoss
11
+ base_model: w601sxs/b1ade-embed
12
+ metrics:
13
+ - pearson_cosine
14
+ - spearman_cosine
15
+ - pearson_manhattan
16
+ - spearman_manhattan
17
+ - pearson_euclidean
18
+ - spearman_euclidean
19
+ - pearson_dot
20
+ - spearman_dot
21
+ - pearson_max
22
+ - spearman_max
23
+ - negative_mse
24
+ widget:
25
+ - source_sentence: A man is jumping.
26
+ sentences:
27
+ - The man is jumping off something.
28
+ - Two people are posing for a photograph.
29
+ - two women sing opera
30
+ - source_sentence: The wave is huge.
31
+ sentences:
32
+ - A person is surfing on a large wave.
33
+ - People are competing in figure skating.
34
+ - Cats are sleeping inside the room.
35
+ - source_sentence: The man is short.
36
+ sentences:
37
+ - There is a man vaucuming
38
+ - The man did a self portrait of himself.
39
+ - The boys are asleep in their beds.
40
+ - source_sentence: A boy is bowling.
41
+ sentences:
42
+ - A boy is rolling a ball in a hotel hallway.
43
+ - PHS enrolls approximately 750 students.
44
+ - The older men are talking about their wives.
45
+ - source_sentence: A man is walking
46
+ sentences:
47
+ - The man is going for a walk.
48
+ - The station opened on 1 December 1896.
49
+ - The woman is alone and asleep in the car on the moon.
50
+ pipeline_tag: sentence-similarity
51
+ model-index:
52
+ - name: SentenceTransformer based on w601sxs/b1ade-embed
53
+ results:
54
+ - task:
55
+ type: semantic-similarity
56
+ name: Semantic Similarity
57
+ dataset:
58
+ name: sts dev
59
+ type: sts-dev
60
+ metrics:
61
+ - type: pearson_cosine
62
+ value: 0.6737565660591995
63
+ name: Pearson Cosine
64
+ - type: spearman_cosine
65
+ value: 0.7346594963661589
66
+ name: Spearman Cosine
67
+ - type: pearson_manhattan
68
+ value: 0.700631080294873
69
+ name: Pearson Manhattan
70
+ - type: spearman_manhattan
71
+ value: 0.7089388326911368
72
+ name: Spearman Manhattan
73
+ - type: pearson_euclidean
74
+ value: 0.7016605503100202
75
+ name: Pearson Euclidean
76
+ - type: spearman_euclidean
77
+ value: 0.7101559719602629
78
+ name: Spearman Euclidean
79
+ - type: pearson_dot
80
+ value: 0.7336031520397918
81
+ name: Pearson Dot
82
+ - type: spearman_dot
83
+ value: 0.7509506568007358
84
+ name: Spearman Dot
85
+ - type: pearson_max
86
+ value: 0.7336031520397918
87
+ name: Pearson Max
88
+ - type: spearman_max
89
+ value: 0.7509506568007358
90
+ name: Spearman Max
91
+ - task:
92
+ type: knowledge-distillation
93
+ name: Knowledge Distillation
94
+ dataset:
95
+ name: Unknown
96
+ type: unknown
97
+ metrics:
98
+ - type: negative_mse
99
+ value: -21.545076370239258
100
+ name: Negative Mse
101
+ - task:
102
+ type: semantic-similarity
103
+ name: Semantic Similarity
104
+ dataset:
105
+ name: sts test
106
+ type: sts-test
107
+ metrics:
108
+ - type: pearson_cosine
109
+ value: 0.677225151823628
110
+ name: Pearson Cosine
111
+ - type: spearman_cosine
112
+ value: 0.7310810412009605
113
+ name: Spearman Cosine
114
+ - type: pearson_manhattan
115
+ value: 0.7076654744568199
116
+ name: Pearson Manhattan
117
+ - type: spearman_manhattan
118
+ value: 0.7120808159972457
119
+ name: Spearman Manhattan
120
+ - type: pearson_euclidean
121
+ value: 0.7070890827522099
122
+ name: Pearson Euclidean
123
+ - type: spearman_euclidean
124
+ value: 0.7115055158750536
125
+ name: Spearman Euclidean
126
+ - type: pearson_dot
127
+ value: 0.7026111016442886
128
+ name: Pearson Dot
129
+ - type: spearman_dot
130
+ value: 0.6949199269988278
131
+ name: Spearman Dot
132
+ - type: pearson_max
133
+ value: 0.7076654744568199
134
+ name: Pearson Max
135
+ - type: spearman_max
136
+ value: 0.7310810412009605
137
+ name: Spearman Max
138
+ ---
139
+
140
+ # SentenceTransformer based on w601sxs/b1ade-embed
141
+
142
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [w601sxs/b1ade-embed](https://huggingface.co/w601sxs/b1ade-embed) on the [sentence-transformers/wikipedia-en-sentences](https://huggingface.co/datasets/sentence-transformers/wikipedia-en-sentences) dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
143
+
144
+ ## Model Details
145
+
146
+ ### Model Description
147
+ - **Model Type:** Sentence Transformer
148
+ - **Base model:** [w601sxs/b1ade-embed](https://huggingface.co/w601sxs/b1ade-embed) <!-- at revision fbe0925144487193887d384372a3e99bdf043596 -->
149
+ - **Maximum Sequence Length:** 512 tokens
150
+ - **Output Dimensionality:** 1024 tokens
151
+ - **Similarity Function:** Cosine Similarity
152
+ - **Training Dataset:**
153
+ - [sentence-transformers/wikipedia-en-sentences](https://huggingface.co/datasets/sentence-transformers/wikipedia-en-sentences)
154
+ - **Language:** en
155
+ <!-- - **License:** Unknown -->
156
+
157
+ ### Model Sources
158
+
159
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
160
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
161
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
162
+
163
+ ### Full Model Architecture
164
+
165
+ ```
166
+ SentenceTransformer(
167
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
168
+ (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
169
+ )
170
+ ```
171
+
172
+ ## Usage
173
+
174
+ ### Direct Usage (Sentence Transformers)
175
+
176
+ First install the Sentence Transformers library:
177
+
178
+ ```bash
179
+ pip install -U sentence-transformers
180
+ ```
181
+
182
+ Then you can load this model and run inference.
183
+ ```python
184
+ from sentence_transformers import SentenceTransformer
185
+
186
+ # Download from the 🤗 Hub
187
+ model = SentenceTransformer("w601sxs/b1ade-embed-distilled-from-gte-large-en-v1.5")
188
+ # Run inference
189
+ sentences = [
190
+ 'A man is walking',
191
+ 'The man is going for a walk.',
192
+ 'The station opened on 1 December 1896.',
193
+ ]
194
+ embeddings = model.encode(sentences)
195
+ print(embeddings.shape)
196
+ # [3, 1024]
197
+
198
+ # Get the similarity scores for the embeddings
199
+ similarities = model.similarity(embeddings, embeddings)
200
+ print(similarities.shape)
201
+ # [3, 3]
202
+ ```
203
+
204
+ <!--
205
+ ### Direct Usage (Transformers)
206
+
207
+ <details><summary>Click to see the direct usage in Transformers</summary>
208
+
209
+ </details>
210
+ -->
211
+
212
+ <!--
213
+ ### Downstream Usage (Sentence Transformers)
214
+
215
+ You can finetune this model on your own dataset.
216
+
217
+ <details><summary>Click to expand</summary>
218
+
219
+ </details>
220
+ -->
221
+
222
+ <!--
223
+ ### Out-of-Scope Use
224
+
225
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
226
+ -->
227
+
228
+ ## Evaluation
229
+
230
+ ### Metrics
231
+
232
+ #### Semantic Similarity
233
+ * Dataset: `sts-dev`
234
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
235
+
236
+ | Metric | Value |
237
+ |:--------------------|:-----------|
238
+ | pearson_cosine | 0.6738 |
239
+ | **spearman_cosine** | **0.7347** |
240
+ | pearson_manhattan | 0.7006 |
241
+ | spearman_manhattan | 0.7089 |
242
+ | pearson_euclidean | 0.7017 |
243
+ | spearman_euclidean | 0.7102 |
244
+ | pearson_dot | 0.7336 |
245
+ | spearman_dot | 0.751 |
246
+ | pearson_max | 0.7336 |
247
+ | spearman_max | 0.751 |
248
+
249
+ #### Knowledge Distillation
250
+
251
+ * Evaluated with [<code>MSEEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.MSEEvaluator)
252
+
253
+ | Metric | Value |
254
+ |:-----------------|:-------------|
255
+ | **negative_mse** | **-21.5451** |
256
+
257
+ #### Semantic Similarity
258
+ * Dataset: `sts-test`
259
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
260
+
261
+ | Metric | Value |
262
+ |:--------------------|:-----------|
263
+ | pearson_cosine | 0.6772 |
264
+ | **spearman_cosine** | **0.7311** |
265
+ | pearson_manhattan | 0.7077 |
266
+ | spearman_manhattan | 0.7121 |
267
+ | pearson_euclidean | 0.7071 |
268
+ | spearman_euclidean | 0.7115 |
269
+ | pearson_dot | 0.7026 |
270
+ | spearman_dot | 0.6949 |
271
+ | pearson_max | 0.7077 |
272
+ | spearman_max | 0.7311 |
273
+
274
+ <!--
275
+ ## Bias, Risks and Limitations
276
+
277
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
278
+ -->
279
+
280
+ <!--
281
+ ### Recommendations
282
+
283
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
284
+ -->
285
+
286
+ ## Training Details
287
+
288
+ ### Training Dataset
289
+
290
+ #### sentence-transformers/wikipedia-en-sentences
291
+
292
+ * Dataset: [sentence-transformers/wikipedia-en-sentences](https://huggingface.co/datasets/sentence-transformers/wikipedia-en-sentences) at [4a0972d](https://huggingface.co/datasets/sentence-transformers/wikipedia-en-sentences/tree/4a0972dcb781b5b5d27799798f032606421dd422)
293
+ * Size: 200,000 training samples
294
+ * Columns: <code>sentence</code> and <code>label</code>
295
+ * Approximate statistics based on the first 1000 samples:
296
+ | | sentence | label |
297
+ |:--------|:----------------------------------------------------------------------------------|:--------------------------------------|
298
+ | type | string | list |
299
+ | details | <ul><li>min: 4 tokens</li><li>mean: 12.24 tokens</li><li>max: 52 tokens</li></ul> | <ul><li>size: 1024 elements</li></ul> |
300
+ * Samples:
301
+ | sentence | label |
302
+ |:---------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------|
303
+ | <code>A person on a horse jumps over a broken down airplane.</code> | <code>[-0.5300068259239197, 0.07807248830795288, 0.304331511259079, 0.3473575711250305, 0.3993019461631775, ...]</code> |
304
+ | <code>Children smiling and waving at camera</code> | <code>[-0.3918086886405945, 0.514893114566803, 0.38178062438964844, -0.29475438594818115, -0.07984668761491776, ...]</code> |
305
+ | <code>A boy is jumping on skateboard in the middle of a red bridge.</code> | <code>[-0.7029106020927429, 0.08336036652326584, 0.7830113768577576, -0.7898964285850525, 0.27573251724243164, ...]</code> |
306
+ * Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#mseloss)
307
+
308
+ ### Evaluation Dataset
309
+
310
+ #### sentence-transformers/wikipedia-en-sentences
311
+
312
+ * Dataset: [sentence-transformers/wikipedia-en-sentences](https://huggingface.co/datasets/sentence-transformers/wikipedia-en-sentences) at [4a0972d](https://huggingface.co/datasets/sentence-transformers/wikipedia-en-sentences/tree/4a0972dcb781b5b5d27799798f032606421dd422)
313
+ * Size: 10,000 evaluation samples
314
+ * Columns: <code>sentence</code> and <code>label</code>
315
+ * Approximate statistics based on the first 1000 samples:
316
+ | | sentence | label |
317
+ |:--------|:----------------------------------------------------------------------------------|:--------------------------------------|
318
+ | type | string | list |
319
+ | details | <ul><li>min: 5 tokens</li><li>mean: 13.23 tokens</li><li>max: 57 tokens</li></ul> | <ul><li>size: 1024 elements</li></ul> |
320
+ * Samples:
321
+ | sentence | label |
322
+ |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------|
323
+ | <code>Two women are embracing while holding to go packages.</code> | <code>[-0.5707114338874817, -0.5041555762290955, -1.3100334405899048, 0.5848354697227478, -0.3452240526676178, ...]</code> |
324
+ | <code>Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.</code> | <code>[-0.4810343384742737, 0.034435614943504333, -0.669406533241272, -0.16233624517917633, 0.5214978456497192, ...]</code> |
325
+ | <code>A man selling donuts to a customer during a world exhibition event held in the city of Angeles</code> | <code>[-0.2572114169597626, 0.19592943787574768, -0.6243088841438293, -0.4749126136302948, -0.6737443804740906, ...]</code> |
326
+ * Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#mseloss)
327
+
328
+ ### Training Hyperparameters
329
+ #### Non-Default Hyperparameters
330
+
331
+ - `eval_strategy`: steps
332
+ - `per_device_train_batch_size`: 64
333
+ - `per_device_eval_batch_size`: 64
334
+ - `learning_rate`: 0.0001
335
+ - `num_train_epochs`: 1
336
+ - `warmup_ratio`: 0.1
337
+ - `fp16`: True
338
+ - `load_best_model_at_end`: True
339
+
340
+ #### All Hyperparameters
341
+ <details><summary>Click to expand</summary>
342
+
343
+ - `overwrite_output_dir`: False
344
+ - `do_predict`: False
345
+ - `eval_strategy`: steps
346
+ - `prediction_loss_only`: True
347
+ - `per_device_train_batch_size`: 64
348
+ - `per_device_eval_batch_size`: 64
349
+ - `per_gpu_train_batch_size`: None
350
+ - `per_gpu_eval_batch_size`: None
351
+ - `gradient_accumulation_steps`: 1
352
+ - `eval_accumulation_steps`: None
353
+ - `learning_rate`: 0.0001
354
+ - `weight_decay`: 0.0
355
+ - `adam_beta1`: 0.9
356
+ - `adam_beta2`: 0.999
357
+ - `adam_epsilon`: 1e-08
358
+ - `max_grad_norm`: 1.0
359
+ - `num_train_epochs`: 1
360
+ - `max_steps`: -1
361
+ - `lr_scheduler_type`: linear
362
+ - `lr_scheduler_kwargs`: {}
363
+ - `warmup_ratio`: 0.1
364
+ - `warmup_steps`: 0
365
+ - `log_level`: passive
366
+ - `log_level_replica`: warning
367
+ - `log_on_each_node`: True
368
+ - `logging_nan_inf_filter`: True
369
+ - `save_safetensors`: True
370
+ - `save_on_each_node`: False
371
+ - `save_only_model`: False
372
+ - `restore_callback_states_from_checkpoint`: False
373
+ - `no_cuda`: False
374
+ - `use_cpu`: False
375
+ - `use_mps_device`: False
376
+ - `seed`: 42
377
+ - `data_seed`: None
378
+ - `jit_mode_eval`: False
379
+ - `use_ipex`: False
380
+ - `bf16`: False
381
+ - `fp16`: True
382
+ - `fp16_opt_level`: O1
383
+ - `half_precision_backend`: auto
384
+ - `bf16_full_eval`: False
385
+ - `fp16_full_eval`: False
386
+ - `tf32`: None
387
+ - `local_rank`: 0
388
+ - `ddp_backend`: None
389
+ - `tpu_num_cores`: None
390
+ - `tpu_metrics_debug`: False
391
+ - `debug`: []
392
+ - `dataloader_drop_last`: False
393
+ - `dataloader_num_workers`: 0
394
+ - `dataloader_prefetch_factor`: None
395
+ - `past_index`: -1
396
+ - `disable_tqdm`: False
397
+ - `remove_unused_columns`: True
398
+ - `label_names`: None
399
+ - `load_best_model_at_end`: True
400
+ - `ignore_data_skip`: False
401
+ - `fsdp`: []
402
+ - `fsdp_min_num_params`: 0
403
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
404
+ - `fsdp_transformer_layer_cls_to_wrap`: None
405
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
406
+ - `deepspeed`: None
407
+ - `label_smoothing_factor`: 0.0
408
+ - `optim`: adamw_torch
409
+ - `optim_args`: None
410
+ - `adafactor`: False
411
+ - `group_by_length`: False
412
+ - `length_column_name`: length
413
+ - `ddp_find_unused_parameters`: None
414
+ - `ddp_bucket_cap_mb`: None
415
+ - `ddp_broadcast_buffers`: False
416
+ - `dataloader_pin_memory`: True
417
+ - `dataloader_persistent_workers`: False
418
+ - `skip_memory_metrics`: True
419
+ - `use_legacy_prediction_loop`: False
420
+ - `push_to_hub`: False
421
+ - `resume_from_checkpoint`: None
422
+ - `hub_model_id`: None
423
+ - `hub_strategy`: every_save
424
+ - `hub_private_repo`: False
425
+ - `hub_always_push`: False
426
+ - `gradient_checkpointing`: False
427
+ - `gradient_checkpointing_kwargs`: None
428
+ - `include_inputs_for_metrics`: False
429
+ - `eval_do_concat_batches`: True
430
+ - `fp16_backend`: auto
431
+ - `push_to_hub_model_id`: None
432
+ - `push_to_hub_organization`: None
433
+ - `mp_parameters`:
434
+ - `auto_find_batch_size`: False
435
+ - `full_determinism`: False
436
+ - `torchdynamo`: None
437
+ - `ray_scope`: last
438
+ - `ddp_timeout`: 1800
439
+ - `torch_compile`: False
440
+ - `torch_compile_backend`: None
441
+ - `torch_compile_mode`: None
442
+ - `dispatch_batches`: None
443
+ - `split_batches`: None
444
+ - `include_tokens_per_second`: False
445
+ - `include_num_input_tokens_seen`: False
446
+ - `neftune_noise_alpha`: None
447
+ - `optim_target_modules`: None
448
+ - `batch_eval_metrics`: False
449
+ - `batch_sampler`: batch_sampler
450
+ - `multi_dataset_batch_sampler`: proportional
451
+
452
+ </details>
453
+
454
+ ### Training Logs
455
+ | Epoch | Step | Training Loss | loss | negative_mse | sts-dev_spearman_cosine | sts-test_spearman_cosine |
456
+ |:----------:|:-------:|:-------------:|:----------:|:------------:|:-----------------------:|:------------------------:|
457
+ | 0.1279 | 100 | 0.4302 | - | - | - | - |
458
+ | 0.2558 | 200 | 0.2398 | - | - | - | - |
459
+ | 0.3836 | 300 | 0.1918 | - | - | - | - |
460
+ | 0.5115 | 400 | 0.1683 | - | - | - | - |
461
+ | **0.6394** | **500** | **0.1539** | **0.2155** | **-21.5451** | **0.7347** | **-** |
462
+ | 0.7673 | 600 | 0.1456 | - | - | - | - |
463
+ | 0.8951 | 700 | 0.1393 | - | - | - | - |
464
+ | 1.0 | 782 | - | - | - | - | 0.7311 |
465
+
466
+ * The bold row denotes the saved checkpoint.
467
+
468
+ ### Framework Versions
469
+ - Python: 3.10.6
470
+ - Sentence Transformers: 3.0.0
471
+ - Transformers: 4.41.1
472
+ - PyTorch: 2.3.0+cu121
473
+ - Accelerate: 0.30.1
474
+ - Datasets: 2.19.1
475
+ - Tokenizers: 0.19.1
476
+
477
+ ## Citation
478
+
479
+ ### BibTeX
480
+
481
+ #### Sentence Transformers
482
+ ```bibtex
483
+ @inproceedings{reimers-2019-sentence-bert,
484
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
485
+ author = "Reimers, Nils and Gurevych, Iryna",
486
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
487
+ month = "11",
488
+ year = "2019",
489
+ publisher = "Association for Computational Linguistics",
490
+ url = "https://arxiv.org/abs/1908.10084",
491
+ }
492
+ ```
493
+
494
+ #### MSELoss
495
+ ```bibtex
496
+ @inproceedings{reimers-2020-multilingual-sentence-bert,
497
+ title = "Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation",
498
+ author = "Reimers, Nils and Gurevych, Iryna",
499
+ booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing",
500
+ month = "11",
501
+ year = "2020",
502
+ publisher = "Association for Computational Linguistics",
503
+ url = "https://arxiv.org/abs/2004.09813",
504
+ }
505
+ ```
506
+
507
+ <!--
508
+ ## Glossary
509
+
510
+ *Clearly define terms in order to be accessible across audiences.*
511
+ -->
512
+
513
+ <!--
514
+ ## Model Card Authors
515
+
516
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
517
+ -->
518
+
519
+ <!--
520
+ ## Model Card Contact
521
+
522
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
523
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "w601sxs/b1ade-embed",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 1024,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 4096,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 16,
18
+ "num_hidden_layers": 24,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.41.1",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 30522
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.0",
4
+ "transformers": "4.41.1",
5
+ "pytorch": "2.3.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b571c23ce9b372c7d2a487ef52d815a890715eddd85b948da34bf0b5c781f1fc
3
+ size 1340612432
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": true,
47
+ "mask_token": "[MASK]",
48
+ "model_max_length": 512,
49
+ "pad_token": "[PAD]",
50
+ "sep_token": "[SEP]",
51
+ "strip_accents": null,
52
+ "tokenize_chinese_chars": true,
53
+ "tokenizer_class": "BertTokenizer",
54
+ "unk_token": "[UNK]"
55
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff