File size: 1,792 Bytes
40b96e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98339d4
 
40b96e4
 
789b259
40b96e4
 
 
 
 
 
 
 
 
 
 
77be1ad
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
license: apache-2.0
base_model: PY007/TinyLlama-1.1B-Chat-v0.3
tags:
- generated_from_trainer
model-index:
- name: megachat
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# megachat

This model is a fine-tuned version of [PY007/TinyLlama-1.1B-Chat-v0.3](https://huggingface.co/PY007/TinyLlama-1.1B-Chat-v0.3) on an unknown dataset.

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- training_steps: 2000

### Training results



### Framework versions

- Transformers 4.34.0
- Pytorch 2.1.0+cu121
- Datasets 2.14.5
- Tokenizers 0.14.1

# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_w95__megachat)

| Metric                | Value                     |
|-----------------------|---------------------------|
| Avg.                  | 30.38   |
| ARC (25-shot)         | 30.8          |
| HellaSwag (10-shot)   | 54.35    |
| MMLU (5-shot)         | 25.55         |
| TruthfulQA (0-shot)   | 39.85   |
| Winogrande (5-shot)   | 56.99   |
| GSM8K (5-shot)        | 0.99        |
| DROP (3-shot)         | 4.16         |