import inspect import re from typing import Callable, List, Optional, Union import numpy as np import torch import PIL from diffusers.configuration_utils import FrozenDict from diffusers.models import AutoencoderKL, UNet2DConditionModel from diffusers.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import deprecate, is_accelerate_available, logging from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer logger = logging.get_logger(__name__) # pylint: disable=invalid-name re_attention = re.compile( r""" \\\(| \\\)| \\\[| \\]| \\\\| \\| \(| \[| :([+-]?[.\d]+)\)| \)| ]| [^\\()\[\]:]+| : """, re.X, ) def parse_prompt_attention(text): """ Parses a string with attention tokens and returns a list of pairs: text and its associated weight. Accepted tokens are: (abc) - increases attention to abc by a multiplier of 1.1 (abc:3.12) - increases attention to abc by a multiplier of 3.12 [abc] - decreases attention to abc by a multiplier of 1.1 \( - literal character '(' \[ - literal character '[' \) - literal character ')' \] - literal character ']' \\ - literal character '\' anything else - just text >>> parse_prompt_attention('normal text') [['normal text', 1.0]] >>> parse_prompt_attention('an (important) word') [['an ', 1.0], ['important', 1.1], [' word', 1.0]] >>> parse_prompt_attention('(unbalanced') [['unbalanced', 1.1]] >>> parse_prompt_attention('\(literal\]') [['(literal]', 1.0]] >>> parse_prompt_attention('(unnecessary)(parens)') [['unnecessaryparens', 1.1]] >>> parse_prompt_attention('a (((house:1.3)) [on] a (hill:0.5), sun, (((sky))).') [['a ', 1.0], ['house', 1.5730000000000004], [' ', 1.1], ['on', 1.0], [' a ', 1.1], ['hill', 0.55], [', sun, ', 1.1], ['sky', 1.4641000000000006], ['.', 1.1]] """ res = [] round_brackets = [] square_brackets = [] round_bracket_multiplier = 1.1 square_bracket_multiplier = 1 / 1.1 def multiply_range(start_position, multiplier): for p in range(start_position, len(res)): res[p][1] *= multiplier for m in re_attention.finditer(text): text = m.group(0) weight = m.group(1) if text.startswith("\\"): res.append([text[1:], 1.0]) elif text == "(": round_brackets.append(len(res)) elif text == "[": square_brackets.append(len(res)) elif weight is not None and len(round_brackets) > 0: multiply_range(round_brackets.pop(), float(weight)) elif text == ")" and len(round_brackets) > 0: multiply_range(round_brackets.pop(), round_bracket_multiplier) elif text == "]" and len(square_brackets) > 0: multiply_range(square_brackets.pop(), square_bracket_multiplier) else: res.append([text, 1.0]) for pos in round_brackets: multiply_range(pos, round_bracket_multiplier) for pos in square_brackets: multiply_range(pos, square_bracket_multiplier) if len(res) == 0: res = [["", 1.0]] # merge runs of identical weights i = 0 while i + 1 < len(res): if res[i][1] == res[i + 1][1]: res[i][0] += res[i + 1][0] res.pop(i + 1) else: i += 1 return res def get_prompts_with_weights(pipe: DiffusionPipeline, prompt: List[str], max_length: int): r""" Tokenize a list of prompts and return its tokens with weights of each token. No padding, starting or ending token is included. """ tokens = [] weights = [] truncated = False for text in prompt: texts_and_weights = parse_prompt_attention(text) text_token = [] text_weight = [] for word, weight in texts_and_weights: # tokenize and discard the starting and the ending token token = pipe.tokenizer(word).input_ids[1:-1] text_token += token # copy the weight by length of token text_weight += [weight] * len(token) # stop if the text is too long (longer than truncation limit) if len(text_token) > max_length: truncated = True break # truncate if len(text_token) > max_length: truncated = True text_token = text_token[:max_length] text_weight = text_weight[:max_length] tokens.append(text_token) weights.append(text_weight) if truncated: logger.warning("Prompt was truncated. Try to shorten the prompt or increase max_embeddings_multiples") return tokens, weights def pad_tokens_and_weights(tokens, weights, max_length, bos, eos, no_boseos_middle=True, chunk_length=77): r""" Pad the tokens (with starting and ending tokens) and weights (with 1.0) to max_length. """ max_embeddings_multiples = (max_length - 2) // (chunk_length - 2) weights_length = max_length if no_boseos_middle else max_embeddings_multiples * chunk_length for i in range(len(tokens)): tokens[i] = [bos] + tokens[i] + [eos] * (max_length - 1 - len(tokens[i])) if no_boseos_middle: weights[i] = [1.0] + weights[i] + [1.0] * (max_length - 1 - len(weights[i])) else: w = [] if len(weights[i]) == 0: w = [1.0] * weights_length else: for j in range(max_embeddings_multiples): w.append(1.0) # weight for starting token in this chunk w += weights[i][j * (chunk_length - 2) : min(len(weights[i]), (j + 1) * (chunk_length - 2))] w.append(1.0) # weight for ending token in this chunk w += [1.0] * (weights_length - len(w)) weights[i] = w[:] return tokens, weights def get_unweighted_text_embeddings( pipe: DiffusionPipeline, text_input: torch.Tensor, chunk_length: int, no_boseos_middle: Optional[bool] = True, ): """ When the length of tokens is a multiple of the capacity of the text encoder, it should be split into chunks and sent to the text encoder individually. """ max_embeddings_multiples = (text_input.shape[1] - 2) // (chunk_length - 2) if max_embeddings_multiples > 1: text_embeddings = [] for i in range(max_embeddings_multiples): # extract the i-th chunk text_input_chunk = text_input[:, i * (chunk_length - 2) : (i + 1) * (chunk_length - 2) + 2].clone() # cover the head and the tail by the starting and the ending tokens text_input_chunk[:, 0] = text_input[0, 0] text_input_chunk[:, -1] = text_input[0, -1] text_embedding = pipe.text_encoder(text_input_chunk)[0] if no_boseos_middle: if i == 0: # discard the ending token text_embedding = text_embedding[:, :-1] elif i == max_embeddings_multiples - 1: # discard the starting token text_embedding = text_embedding[:, 1:] else: # discard both starting and ending tokens text_embedding = text_embedding[:, 1:-1] text_embeddings.append(text_embedding) text_embeddings = torch.concat(text_embeddings, axis=1) else: text_embeddings = pipe.text_encoder(text_input)[0] return text_embeddings def get_weighted_text_embeddings( pipe: DiffusionPipeline, prompt: Union[str, List[str]], uncond_prompt: Optional[Union[str, List[str]]] = None, max_embeddings_multiples: Optional[int] = 1, no_boseos_middle: Optional[bool] = False, skip_parsing: Optional[bool] = False, skip_weighting: Optional[bool] = False, **kwargs, ): r""" Prompts can be assigned with local weights using brackets. For example, prompt 'A (very beautiful) masterpiece' highlights the words 'very beautiful', and the embedding tokens corresponding to the words get multiplied by a constant, 1.1. Also, to regularize of the embedding, the weighted embedding would be scaled to preserve the original mean. Args: pipe (`DiffusionPipeline`): Pipe to provide access to the tokenizer and the text encoder. prompt (`str` or `List[str]`): The prompt or prompts to guide the image generation. uncond_prompt (`str` or `List[str]`): The unconditional prompt or prompts for guide the image generation. If unconditional prompt is provided, the embeddings of prompt and uncond_prompt are concatenated. max_embeddings_multiples (`int`, *optional*, defaults to `1`): The max multiple length of prompt embeddings compared to the max output length of text encoder. no_boseos_middle (`bool`, *optional*, defaults to `False`): If the length of text token is multiples of the capacity of text encoder, whether reserve the starting and ending token in each of the chunk in the middle. skip_parsing (`bool`, *optional*, defaults to `False`): Skip the parsing of brackets. skip_weighting (`bool`, *optional*, defaults to `False`): Skip the weighting. When the parsing is skipped, it is forced True. """ max_length = (pipe.tokenizer.model_max_length - 2) * max_embeddings_multiples + 2 if isinstance(prompt, str): prompt = [prompt] if not skip_parsing: prompt_tokens, prompt_weights = get_prompts_with_weights(pipe, prompt, max_length - 2) if uncond_prompt is not None: if isinstance(uncond_prompt, str): uncond_prompt = [uncond_prompt] uncond_tokens, uncond_weights = get_prompts_with_weights(pipe, uncond_prompt, max_length - 2) else: prompt_tokens = [ token[1:-1] for token in pipe.tokenizer(prompt, max_length=max_length, truncation=True).input_ids ] prompt_weights = [[1.0] * len(token) for token in prompt_tokens] if uncond_prompt is not None: if isinstance(uncond_prompt, str): uncond_prompt = [uncond_prompt] uncond_tokens = [ token[1:-1] for token in pipe.tokenizer(uncond_prompt, max_length=max_length, truncation=True).input_ids ] uncond_weights = [[1.0] * len(token) for token in uncond_tokens] # round up the longest length of tokens to a multiple of (model_max_length - 2) max_length = max([len(token) for token in prompt_tokens]) if uncond_prompt is not None: max_length = max(max_length, max([len(token) for token in uncond_tokens])) max_embeddings_multiples = min( max_embeddings_multiples, (max_length - 1) // (pipe.tokenizer.model_max_length - 2) + 1, ) max_embeddings_multiples = max(1, max_embeddings_multiples) max_length = (pipe.tokenizer.model_max_length - 2) * max_embeddings_multiples + 2 # pad the length of tokens and weights bos = pipe.tokenizer.bos_token_id eos = pipe.tokenizer.eos_token_id prompt_tokens, prompt_weights = pad_tokens_and_weights( prompt_tokens, prompt_weights, max_length, bos, eos, no_boseos_middle=no_boseos_middle, chunk_length=pipe.tokenizer.model_max_length, ) prompt_tokens = torch.tensor(prompt_tokens, dtype=torch.long, device=pipe.device) if uncond_prompt is not None: uncond_tokens, uncond_weights = pad_tokens_and_weights( uncond_tokens, uncond_weights, max_length, bos, eos, no_boseos_middle=no_boseos_middle, chunk_length=pipe.tokenizer.model_max_length, ) uncond_tokens = torch.tensor(uncond_tokens, dtype=torch.long, device=pipe.device) # get the embeddings text_embeddings = get_unweighted_text_embeddings( pipe, prompt_tokens, pipe.tokenizer.model_max_length, no_boseos_middle=no_boseos_middle, ) prompt_weights = torch.tensor(prompt_weights, dtype=text_embeddings.dtype, device=pipe.device) if uncond_prompt is not None: uncond_embeddings = get_unweighted_text_embeddings( pipe, uncond_tokens, pipe.tokenizer.model_max_length, no_boseos_middle=no_boseos_middle, ) uncond_weights = torch.tensor(uncond_weights, dtype=uncond_embeddings.dtype, device=pipe.device) # assign weights to the prompts and normalize in the sense of mean # TODO: should we normalize by chunk or in a whole (current implementation)? if (not skip_parsing) and (not skip_weighting): previous_mean = text_embeddings.mean(axis=[-2, -1]) text_embeddings *= prompt_weights.unsqueeze(-1) text_embeddings *= (previous_mean / text_embeddings.mean(axis=[-2, -1])).unsqueeze(-1).unsqueeze(-1) if uncond_prompt is not None: previous_mean = uncond_embeddings.mean(axis=[-2, -1]) uncond_embeddings *= uncond_weights.unsqueeze(-1) uncond_embeddings *= (previous_mean / uncond_embeddings.mean(axis=[-2, -1])).unsqueeze(-1).unsqueeze(-1) if uncond_prompt is not None: return text_embeddings, uncond_embeddings return text_embeddings, None def preprocess_image(image): w, h = image.size w, h = map(lambda x: x - x % 32, (w, h)) # resize to integer multiple of 32 image = image.resize((w, h), resample=PIL.Image.LANCZOS) image = np.array(image).astype(np.float32) / 255.0 image = image[None].transpose(0, 3, 1, 2) image = torch.from_numpy(image) return 2.0 * image - 1.0 def preprocess_mask(mask): mask = mask.convert("L") w, h = mask.size w, h = map(lambda x: x - x % 32, (w, h)) # resize to integer multiple of 32 mask = mask.resize((w // 8, h // 8), resample=PIL.Image.NEAREST) mask = np.array(mask).astype(np.float32) / 255.0 mask = np.tile(mask, (4, 1, 1)) mask = mask[None].transpose(0, 1, 2, 3) # what does this step do? mask = 1 - mask # repaint white, keep black mask = torch.from_numpy(mask) return mask class StableDiffusionLongPromptWeightingPipeline(DiffusionPipeline): r""" Pipeline for text-to-image generation using Stable Diffusion without tokens length limit, and support parsing weighting in prompt. This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) Args: vae ([`AutoencoderKL`]): Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. text_encoder ([`CLIPTextModel`]): Frozen text-encoder. Stable Diffusion uses the text portion of [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. tokenizer (`CLIPTokenizer`): Tokenizer of class [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents. scheduler ([`SchedulerMixin`]): A scheduler to be used in combination with `unet` to denoise the encoded image latens. Can be one of [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. safety_checker ([`StableDiffusionSafetyChecker`]): Classification module that estimates whether generated images could be considered offensive or harmful. Please, refer to the [model card](https://huggingface.co/CompVis/stable-diffusion-v1-4) for details. feature_extractor ([`CLIPFeatureExtractor`]): Model that extracts features from generated images to be used as inputs for the `safety_checker`. """ def __init__( self, vae: AutoencoderKL, text_encoder: CLIPTextModel, tokenizer: CLIPTokenizer, unet: UNet2DConditionModel, scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler], safety_checker: StableDiffusionSafetyChecker, feature_extractor: CLIPFeatureExtractor, ): super().__init__() if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1: deprecation_message = ( f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`" f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure " "to update the config accordingly as leaving `steps_offset` might led to incorrect results" " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub," " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`" " file" ) deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False) new_config = dict(scheduler.config) new_config["steps_offset"] = 1 scheduler._internal_dict = FrozenDict(new_config) if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True: deprecation_message = ( f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`." " `clip_sample` should be set to False in the configuration file. Please make sure to update the" " config accordingly as not setting `clip_sample` in the config might lead to incorrect results in" " future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very" " nice if you could open a Pull request for the `scheduler/scheduler_config.json` file" ) deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False) new_config = dict(scheduler.config) new_config["clip_sample"] = False scheduler._internal_dict = FrozenDict(new_config) if safety_checker is None: logger.warn( f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" " results in services or applications open to the public. Both the diffusers team and Hugging Face" " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" " it only for use-cases that involve analyzing network behavior or auditing its results. For more" " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." ) self.register_modules( vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor, ) def enable_xformers_memory_efficient_attention(self): r""" Enable memory efficient attention as implemented in xformers. When this option is enabled, you should observe lower GPU memory usage and a potential speed up at inference time. Speed up at training time is not guaranteed. Warning: When Memory Efficient Attention and Sliced attention are both enabled, the Memory Efficient Attention is used. """ self.unet.set_use_memory_efficient_attention_xformers(True) def disable_xformers_memory_efficient_attention(self): r""" Disable memory efficient attention as implemented in xformers. """ self.unet.set_use_memory_efficient_attention_xformers(False) def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"): r""" Enable sliced attention computation. When this option is enabled, the attention module will split the input tensor in slices, to compute attention in several steps. This is useful to save some memory in exchange for a small speed decrease. Args: slice_size (`str` or `int`, *optional*, defaults to `"auto"`): When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If a number is provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim` must be a multiple of `slice_size`. """ if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory slice_size = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(slice_size) def disable_attention_slicing(self): r""" Disable sliced attention computation. If `enable_attention_slicing` was previously invoked, this method will go back to computing attention in one step. """ # set slice_size = `None` to disable `attention slicing` self.enable_attention_slicing(None) def enable_sequential_cpu_offload(self): r""" Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet, text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a `torch.device('meta') and loaded to GPU only when their specific submodule has its `forward` method called. """ if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`") device = self.device for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]: if cpu_offloaded_model is not None: cpu_offload(cpu_offloaded_model, device) @torch.no_grad() def __call__( self, prompt: Union[str, List[str]], negative_prompt: Optional[Union[str, List[str]]] = None, init_image: Union[torch.FloatTensor, PIL.Image.Image] = None, mask_image: Union[torch.FloatTensor, PIL.Image.Image] = None, height: int = 512, width: int = 512, num_inference_steps: int = 50, guidance_scale: float = 7.5, strength: float = 0.8, num_images_per_prompt: Optional[int] = 1, eta: float = 0.0, generator: Optional[torch.Generator] = None, latents: Optional[torch.FloatTensor] = None, max_embeddings_multiples: Optional[int] = 3, output_type: Optional[str] = "pil", return_dict: bool = True, callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, is_cancelled_callback: Optional[Callable[[], bool]] = None, callback_steps: Optional[int] = 1, **kwargs, ): r""" Function invoked when calling the pipeline for generation. Args: prompt (`str` or `List[str]`): The prompt or prompts to guide the image generation. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). init_image (`torch.FloatTensor` or `PIL.Image.Image`): `Image`, or tensor representing an image batch, that will be used as the starting point for the process. mask_image (`torch.FloatTensor` or `PIL.Image.Image`): `Image`, or tensor representing an image batch, to mask `init_image`. White pixels in the mask will be replaced by noise and therefore repainted, while black pixels will be preserved. If `mask_image` is a PIL image, it will be converted to a single channel (luminance) before use. If it's a tensor, it should contain one color channel (L) instead of 3, so the expected shape would be `(B, H, W, 1)`. height (`int`, *optional*, defaults to 512): The height in pixels of the generated image. width (`int`, *optional*, defaults to 512): The width in pixels of the generated image. num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. guidance_scale (`float`, *optional*, defaults to 7.5): Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality. strength (`float`, *optional*, defaults to 0.8): Conceptually, indicates how much to transform the reference `init_image`. Must be between 0 and 1. `init_image` will be used as a starting point, adding more noise to it the larger the `strength`. The number of denoising steps depends on the amount of noise initially added. When `strength` is 1, added noise will be maximum and the denoising process will run for the full number of iterations specified in `num_inference_steps`. A value of 1, therefore, essentially ignores `init_image`. num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. eta (`float`, *optional*, defaults to 0.0): Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to [`schedulers.DDIMScheduler`], will be ignored for others. generator (`torch.Generator`, *optional*): A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.FloatTensor`, *optional*): Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied random `generator`. max_embeddings_multiples (`int`, *optional*, defaults to `3`): The max multiple length of prompt embeddings compared to the max output length of text encoder. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generate image. Choose between [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a plain tuple. callback (`Callable`, *optional*): A function that will be called every `callback_steps` steps during inference. The function will be called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. is_cancelled_callback (`Callable`, *optional*): A function that will be called every `callback_steps` steps during inference. If the function returns `True`, the inference will be cancelled. callback_steps (`int`, *optional*, defaults to 1): The frequency at which the `callback` function will be called. If not specified, the callback will be called at every step. Returns: `None` if cancelled by `is_cancelled_callback`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple. When returning a tuple, the first element is a list with the generated images, and the second element is a list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" (nsfw) content, according to the `safety_checker`. """ if isinstance(prompt, str): batch_size = 1 prompt = [prompt] elif isinstance(prompt, list): batch_size = len(prompt) else: raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") if strength < 0 or strength > 1: raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}") if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") if (callback_steps is None) or ( callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) ): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(callback_steps)}." ) # get prompt text embeddings # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. do_classifier_free_guidance = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if negative_prompt is None: negative_prompt = [""] * batch_size elif isinstance(negative_prompt, str): negative_prompt = [negative_prompt] * batch_size if batch_size != len(negative_prompt): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" " the batch size of `prompt`." ) text_embeddings, uncond_embeddings = get_weighted_text_embeddings( pipe=self, prompt=prompt, uncond_prompt=negative_prompt if do_classifier_free_guidance else None, max_embeddings_multiples=max_embeddings_multiples, **kwargs, ) bs_embed, seq_len, _ = text_embeddings.shape text_embeddings = text_embeddings.repeat(1, num_images_per_prompt, 1) text_embeddings = text_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1) if do_classifier_free_guidance: bs_embed, seq_len, _ = uncond_embeddings.shape uncond_embeddings = uncond_embeddings.repeat(1, num_images_per_prompt, 1) uncond_embeddings = uncond_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1) text_embeddings = torch.cat([uncond_embeddings, text_embeddings]) # set timesteps self.scheduler.set_timesteps(num_inference_steps) latents_dtype = text_embeddings.dtype init_latents_orig = None mask = None noise = None if init_image is None: # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. latents_shape = ( batch_size * num_images_per_prompt, self.unet.in_channels, height // 8, width // 8, ) if latents is None: if self.device.type == "mps": # randn does not exist on mps latents = torch.randn( latents_shape, generator=generator, device="cpu", dtype=latents_dtype, ).to(self.device) else: latents = torch.randn( latents_shape, generator=generator, device=self.device, dtype=latents_dtype, ) else: if latents.shape != latents_shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}") latents = latents.to(self.device) timesteps = self.scheduler.timesteps.to(self.device) # scale the initial noise by the standard deviation required by the scheduler latents = latents * self.scheduler.init_noise_sigma else: if isinstance(init_image, PIL.Image.Image): init_image = preprocess_image(init_image) # encode the init image into latents and scale the latents init_image = init_image.to(device=self.device, dtype=latents_dtype) init_latent_dist = self.vae.encode(init_image).latent_dist init_latents = init_latent_dist.sample(generator=generator) init_latents = 0.18215 * init_latents init_latents = torch.cat([init_latents] * batch_size * num_images_per_prompt, dim=0) init_latents_orig = init_latents # preprocess mask if mask_image is not None: if isinstance(mask_image, PIL.Image.Image): mask_image = preprocess_mask(mask_image) mask_image = mask_image.to(device=self.device, dtype=latents_dtype) mask = torch.cat([mask_image] * batch_size * num_images_per_prompt) # check sizes if not mask.shape == init_latents.shape: raise ValueError("The mask and init_image should be the same size!") # get the original timestep using init_timestep offset = self.scheduler.config.get("steps_offset", 0) init_timestep = int(num_inference_steps * strength) + offset init_timestep = min(init_timestep, num_inference_steps) timesteps = self.scheduler.timesteps[-init_timestep] timesteps = torch.tensor([timesteps] * batch_size * num_images_per_prompt, device=self.device) # add noise to latents using the timesteps if self.device.type == "mps": # randn does not exist on mps noise = torch.randn( init_latents.shape, generator=generator, device="cpu", dtype=latents_dtype, ).to(self.device) else: noise = torch.randn( init_latents.shape, generator=generator, device=self.device, dtype=latents_dtype, ) latents = self.scheduler.add_noise(init_latents, noise, timesteps) t_start = max(num_inference_steps - init_timestep + offset, 0) timesteps = self.scheduler.timesteps[t_start:].to(self.device) # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) extra_step_kwargs = {} if accepts_eta: extra_step_kwargs["eta"] = eta for i, t in enumerate(self.progress_bar(timesteps)): # expand the latents if we are doing classifier free guidance latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) # predict the noise residual noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample # perform guidance if do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample if mask is not None: # masking init_latents_proper = self.scheduler.add_noise(init_latents_orig, noise, torch.tensor([t])) latents = (init_latents_proper * mask) + (latents * (1 - mask)) # call the callback, if provided if i % callback_steps == 0: if callback is not None: callback(i, t, latents) if is_cancelled_callback is not None and is_cancelled_callback(): return None latents = 1 / 0.18215 * latents image = self.vae.decode(latents).sample image = (image / 2 + 0.5).clamp(0, 1) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16 image = image.cpu().permute(0, 2, 3, 1).float().numpy() if self.safety_checker is not None: safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pt").to( self.device ) image, has_nsfw_concept = self.safety_checker( images=image, clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype), ) else: has_nsfw_concept = None if output_type == "pil": image = self.numpy_to_pil(image) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) def text2img( self, prompt: Union[str, List[str]], negative_prompt: Optional[Union[str, List[str]]] = None, height: int = 512, width: int = 512, num_inference_steps: int = 50, guidance_scale: float = 7.5, num_images_per_prompt: Optional[int] = 1, eta: float = 0.0, generator: Optional[torch.Generator] = None, latents: Optional[torch.FloatTensor] = None, max_embeddings_multiples: Optional[int] = 3, output_type: Optional[str] = "pil", return_dict: bool = True, callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, callback_steps: Optional[int] = 1, **kwargs, ): r""" Function for text-to-image generation. Args: prompt (`str` or `List[str]`): The prompt or prompts to guide the image generation. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). height (`int`, *optional*, defaults to 512): The height in pixels of the generated image. width (`int`, *optional*, defaults to 512): The width in pixels of the generated image. num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. guidance_scale (`float`, *optional*, defaults to 7.5): Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality. num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. eta (`float`, *optional*, defaults to 0.0): Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to [`schedulers.DDIMScheduler`], will be ignored for others. generator (`torch.Generator`, *optional*): A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.FloatTensor`, *optional*): Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied random `generator`. max_embeddings_multiples (`int`, *optional*, defaults to `3`): The max multiple length of prompt embeddings compared to the max output length of text encoder. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generate image. Choose between [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a plain tuple. callback (`Callable`, *optional*): A function that will be called every `callback_steps` steps during inference. The function will be called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. callback_steps (`int`, *optional*, defaults to 1): The frequency at which the `callback` function will be called. If not specified, the callback will be called at every step. Returns: [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple. When returning a tuple, the first element is a list with the generated images, and the second element is a list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" (nsfw) content, according to the `safety_checker`. """ return self.__call__( prompt=prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale, num_images_per_prompt=num_images_per_prompt, eta=eta, generator=generator, latents=latents, max_embeddings_multiples=max_embeddings_multiples, output_type=output_type, return_dict=return_dict, callback=callback, callback_steps=callback_steps, **kwargs, ) def img2img( self, init_image: Union[torch.FloatTensor, PIL.Image.Image], prompt: Union[str, List[str]], negative_prompt: Optional[Union[str, List[str]]] = None, strength: float = 0.8, num_inference_steps: Optional[int] = 50, guidance_scale: Optional[float] = 7.5, num_images_per_prompt: Optional[int] = 1, eta: Optional[float] = 0.0, generator: Optional[torch.Generator] = None, max_embeddings_multiples: Optional[int] = 3, output_type: Optional[str] = "pil", return_dict: bool = True, callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, callback_steps: Optional[int] = 1, **kwargs, ): r""" Function for image-to-image generation. Args: init_image (`torch.FloatTensor` or `PIL.Image.Image`): `Image`, or tensor representing an image batch, that will be used as the starting point for the process. prompt (`str` or `List[str]`): The prompt or prompts to guide the image generation. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). strength (`float`, *optional*, defaults to 0.8): Conceptually, indicates how much to transform the reference `init_image`. Must be between 0 and 1. `init_image` will be used as a starting point, adding more noise to it the larger the `strength`. The number of denoising steps depends on the amount of noise initially added. When `strength` is 1, added noise will be maximum and the denoising process will run for the full number of iterations specified in `num_inference_steps`. A value of 1, therefore, essentially ignores `init_image`. num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. This parameter will be modulated by `strength`. guidance_scale (`float`, *optional*, defaults to 7.5): Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality. num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. eta (`float`, *optional*, defaults to 0.0): Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to [`schedulers.DDIMScheduler`], will be ignored for others. generator (`torch.Generator`, *optional*): A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. max_embeddings_multiples (`int`, *optional*, defaults to `3`): The max multiple length of prompt embeddings compared to the max output length of text encoder. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generate image. Choose between [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a plain tuple. callback (`Callable`, *optional*): A function that will be called every `callback_steps` steps during inference. The function will be called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. callback_steps (`int`, *optional*, defaults to 1): The frequency at which the `callback` function will be called. If not specified, the callback will be called at every step. Returns: [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple. When returning a tuple, the first element is a list with the generated images, and the second element is a list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" (nsfw) content, according to the `safety_checker`. """ return self.__call__( prompt=prompt, negative_prompt=negative_prompt, init_image=init_image, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale, strength=strength, num_images_per_prompt=num_images_per_prompt, eta=eta, generator=generator, max_embeddings_multiples=max_embeddings_multiples, output_type=output_type, return_dict=return_dict, callback=callback, callback_steps=callback_steps, **kwargs, ) def inpaint( self, init_image: Union[torch.FloatTensor, PIL.Image.Image], mask_image: Union[torch.FloatTensor, PIL.Image.Image], prompt: Union[str, List[str]], negative_prompt: Optional[Union[str, List[str]]] = None, strength: float = 0.8, num_inference_steps: Optional[int] = 50, guidance_scale: Optional[float] = 7.5, num_images_per_prompt: Optional[int] = 1, eta: Optional[float] = 0.0, generator: Optional[torch.Generator] = None, max_embeddings_multiples: Optional[int] = 3, output_type: Optional[str] = "pil", return_dict: bool = True, callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, callback_steps: Optional[int] = 1, **kwargs, ): r""" Function for inpaint. Args: init_image (`torch.FloatTensor` or `PIL.Image.Image`): `Image`, or tensor representing an image batch, that will be used as the starting point for the process. This is the image whose masked region will be inpainted. mask_image (`torch.FloatTensor` or `PIL.Image.Image`): `Image`, or tensor representing an image batch, to mask `init_image`. White pixels in the mask will be replaced by noise and therefore repainted, while black pixels will be preserved. If `mask_image` is a PIL image, it will be converted to a single channel (luminance) before use. If it's a tensor, it should contain one color channel (L) instead of 3, so the expected shape would be `(B, H, W, 1)`. prompt (`str` or `List[str]`): The prompt or prompts to guide the image generation. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). strength (`float`, *optional*, defaults to 0.8): Conceptually, indicates how much to inpaint the masked area. Must be between 0 and 1. When `strength` is 1, the denoising process will be run on the masked area for the full number of iterations specified in `num_inference_steps`. `init_image` will be used as a reference for the masked area, adding more noise to that region the larger the `strength`. If `strength` is 0, no inpainting will occur. num_inference_steps (`int`, *optional*, defaults to 50): The reference number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. This parameter will be modulated by `strength`, as explained above. guidance_scale (`float`, *optional*, defaults to 7.5): Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality. num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. eta (`float`, *optional*, defaults to 0.0): Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to [`schedulers.DDIMScheduler`], will be ignored for others. generator (`torch.Generator`, *optional*): A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. max_embeddings_multiples (`int`, *optional*, defaults to `3`): The max multiple length of prompt embeddings compared to the max output length of text encoder. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generate image. Choose between [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a plain tuple. callback (`Callable`, *optional*): A function that will be called every `callback_steps` steps during inference. The function will be called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. callback_steps (`int`, *optional*, defaults to 1): The frequency at which the `callback` function will be called. If not specified, the callback will be called at every step. Returns: [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple. When returning a tuple, the first element is a list with the generated images, and the second element is a list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" (nsfw) content, according to the `safety_checker`. """ return self.__call__( prompt=prompt, negative_prompt=negative_prompt, init_image=init_image, mask_image=mask_image, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale, strength=strength, num_images_per_prompt=num_images_per_prompt, eta=eta, generator=generator, max_embeddings_multiples=max_embeddings_multiples, output_type=output_type, return_dict=return_dict, callback=callback, callback_steps=callback_steps, **kwargs, )