File size: 6,405 Bytes
785d919 a4b2fd3 785d919 e914fd7 785d919 c3dd45a 785d919 a4b2fd3 785d919 e914fd7 8976749 c3dd45a 8976749 a4b2fd3 785d919 dc19233 785d919 dc19233 785d919 c3dd45a dc19233 c3dd45a dc19233 c3dd45a dc19233 c3dd45a dc19233 bd35c96 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 |
---
language:
- pt
license: apache-2.0
library_name: transformers
tags:
- Misral
- Portuguese
- 7b
- llama-cpp
- gguf-my-repo
base_model: mistralai/Mistral-7B-Instruct-v0.2
datasets:
- pablo-moreira/gpt4all-j-prompt-generations-pt
- rhaymison/superset
pipeline_tag: text-generation
model-index:
- name: Mistral-portuguese-luana-7b
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: ENEM Challenge (No Images)
type: eduagarcia/enem_challenge
split: train
args:
num_few_shot: 3
metrics:
- type: acc
value: 58.64
name: accuracy
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/Mistral-portuguese-luana-7b
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BLUEX (No Images)
type: eduagarcia-temp/BLUEX_without_images
split: train
args:
num_few_shot: 3
metrics:
- type: acc
value: 47.98
name: accuracy
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/Mistral-portuguese-luana-7b
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: OAB Exams
type: eduagarcia/oab_exams
split: train
args:
num_few_shot: 3
metrics:
- type: acc
value: 38.82
name: accuracy
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/Mistral-portuguese-luana-7b
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Assin2 RTE
type: assin2
split: test
args:
num_few_shot: 15
metrics:
- type: f1_macro
value: 90.63
name: f1-macro
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/Mistral-portuguese-luana-7b
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Assin2 STS
type: eduagarcia/portuguese_benchmark
split: test
args:
num_few_shot: 15
metrics:
- type: pearson
value: 75.81
name: pearson
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/Mistral-portuguese-luana-7b
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: FaQuAD NLI
type: ruanchaves/faquad-nli
split: test
args:
num_few_shot: 15
metrics:
- type: f1_macro
value: 57.79
name: f1-macro
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/Mistral-portuguese-luana-7b
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HateBR Binary
type: ruanchaves/hatebr
split: test
args:
num_few_shot: 25
metrics:
- type: f1_macro
value: 77.24
name: f1-macro
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/Mistral-portuguese-luana-7b
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: PT Hate Speech Binary
type: hate_speech_portuguese
split: test
args:
num_few_shot: 25
metrics:
- type: f1_macro
value: 68.5
name: f1-macro
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/Mistral-portuguese-luana-7b
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: tweetSentBR
type: eduagarcia-temp/tweetsentbr
split: test
args:
num_few_shot: 25
metrics:
- type: f1_macro
value: 63.0
name: f1-macro
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/Mistral-portuguese-luana-7b
name: Open Portuguese LLM Leaderboard
---
# waltervix/Mistral-portuguese-luana-7b-Q4_K_M-GGUF
This model was converted to GGUF format from [`rhaymison/Mistral-portuguese-luana-7b`](https://huggingface.co/rhaymison/Mistral-portuguese-luana-7b) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/rhaymison/Mistral-portuguese-luana-7b) for more details on the model.
<br>
## ✨ Use with Samantha Interface Assistant
**Github project:** https://github.com/controlecidadao/samantha_ia/blob/main/README.md
<br>
## 📺 Video: Intelligence Challenge - Microsoft Phi 3.5 vs Google Gemma 2
**Video:** https://www.youtube.com/watch?v=KgicCGMSygU
<br>
## 👟 Testing a Model in 5 Steps with Samantha
Samantha needs just a `.gguf` model file to generate text. Follow these steps to perform a simple model test:
**1)** Open Windows Task Management by pressing `CTRL + SHIFT + ESC` and check available memory. Close some programs if necessary to free memory.
**2)** Visit [Hugging Face](https://huggingface.co/models?library=gguf&sort=trending&search=gguf) repository and click on the card to open the corresponding page. Locate the _Files and versions_ tab and choose a `.gguf` model that fits in your available memory.
**3)** Right click over the model download link icon and copy its URL.
**4)** Paste the model URL into Samantha's _Download models for testing_ field.
**5)** Insert a prompt into _User prompt_ field and press `Enter`. Keep the `$$$` sign at the end of your prompt. The model will be downloaded and the response will be generated using the default deterministic settings. You can track this process via Windows Task Management.
Every new model downloaded via this copy and paste procedure will replace the previous one to save hard drive space. Model download is saved as `MODEL_FOR_TESTING.gguf` in your _Downloads_ folder.
You can also download the model and save it permanently to your computer. For more datails, visit Samantha's project on Github.
|