from typing import Optional, Union, Tuple import torch from torch import nn from transformers.modeling_outputs import SequenceClassifierOutput from transformers import AutoTokenizer, DebertaV2Model, \ DebertaV2ForSequenceClassification class ClassificationHead(nn.Module): """Head for sentence-level classification tasks.""" def __init__(self, config, num_extra_dims): super().__init__() total_dims = config.hidden_size+num_extra_dims self.dense = nn.Linear(total_dims, total_dims) classifier_dropout = config.hidden_dropout_prob self.dropout = nn.Dropout(classifier_dropout) self.out_proj = nn.Linear(total_dims, config.num_labels) def forward(self, features, **kwargs): x = self.dropout(features) x = self.dense(x) x = torch.tanh(x) x = self.dropout(x) x = self.out_proj(x) return x class CustomSequenceClassification(DebertaV2ForSequenceClassification): def __init__(self, config, num_extra_dims): super().__init__(config) self.num_labels = config.num_labels self.config = config # might need to rename this depending on the model self.deberta = DebertaV2Model(config) self.classifier = ClassificationHead(config, num_extra_dims) # Initialize weights and apply final processing self.post_init() def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, extra_data: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, SequenceClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.deberta( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) # sequence_output will be (batch_size, seq_length, hidden_size) sequence_output = outputs[0] # additional data should be (batch_size, num_extra_dims) cls_embedding = sequence_output[:, 0, :] output = torch.cat((cls_embedding, extra_data), dim=-1) logits = self.classifier(output) loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = nn.MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = nn.CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = nn.BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )