[Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.9.1.post1` ```yaml base_model: meta-llama/Llama-3.1-8B-Instruct model_type: LlamaForCausalLM tokenizer_type: AutoTokenizer gradient_accumulation_steps: 2 micro_batch_size: 8 num_epochs: 4 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.0001 load_in_8bit: true load_in_4bit: false adapter: lora lora_model_dir: null lora_r: 8 lora_alpha: 16 lora_dropout: 0.05 lora_target_modules: - q_proj - v_proj - k_proj datasets: - path: /workspace/FinLoRA/data/train/headline_train.jsonl type: system_prompt: '' field_system: system field_instruction: context field_output: target format: '[INST] {instruction} [/INST]' no_input_format: '[INST] {instruction} [/INST]' dataset_prepared_path: null val_set_size: 0.02 output_dir: /workspace/FinLoRA/lora/axolotl-output/headline_llama_3_1_8b_8bits_r8_rslora peft_use_dora: false peft_use_rslora: true sequence_len: 4096 sample_packing: false pad_to_sequence_len: false wandb_project: finlora_models wandb_entity: null wandb_watch: gradients wandb_name: headline_llama_3_1_8b_8bits_r8_rslora wandb_log_model: 'false' bf16: auto tf32: false gradient_checkpointing: true resume_from_checkpoint: null logging_steps: 500 flash_attention: false deepspeed: deepspeed_configs/zero1.json warmup_steps: 10 evals_per_epoch: 4 saves_per_epoch: 1 weight_decay: 0.0 special_tokens: pad_token: <|end_of_text|> chat_template: llama3 ```

# workspace/FinLoRA/lora/axolotl-output/headline_llama_3_1_8b_8bits_r8_rslora This model is a fine-tuned version of [meta-llama/Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct) on the /workspace/FinLoRA/data/train/headline_train.jsonl dataset. It achieves the following results on the evaluation set: - Loss: 0.0577 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 3 - gradient_accumulation_steps: 2 - total_train_batch_size: 48 - total_eval_batch_size: 24 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 4.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0006 | 1 | 7.2775 | | No log | 0.2504 | 420 | 0.0538 | | 0.1779 | 0.5007 | 840 | 0.0480 | | 0.0475 | 0.7511 | 1260 | 0.0431 | | 0.0404 | 1.0012 | 1680 | 0.0423 | | 0.0344 | 1.2516 | 2100 | 0.0431 | | 0.0328 | 1.5019 | 2520 | 0.0505 | | 0.0328 | 1.7523 | 2940 | 0.0472 | | 0.0301 | 2.0024 | 3360 | 0.0415 | | 0.0282 | 2.2528 | 3780 | 0.0551 | | 0.0222 | 2.5031 | 4200 | 0.0517 | | 0.0216 | 2.7535 | 4620 | 0.0478 | | 0.0201 | 3.0036 | 5040 | 0.0500 | | 0.0201 | 3.2539 | 5460 | 0.0606 | | 0.0135 | 3.5043 | 5880 | 0.0593 | | 0.0117 | 3.7547 | 6300 | 0.0577 | ### Framework versions - PEFT 0.15.2 - Transformers 4.51.3 - Pytorch 2.8.0.dev20250319+cu128 - Datasets 3.5.1 - Tokenizers 0.21.1