File size: 4,037 Bytes
78367c9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.9.1.post1`
```yaml
base_model: meta-llama/Llama-3.1-8B-Instruct
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer
gradient_accumulation_steps: 2
micro_batch_size: 8
num_epochs: 4
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0001
load_in_8bit: true
load_in_4bit: false
adapter: lora
lora_model_dir: null
lora_r: 8
lora_alpha: 16
lora_dropout: 0.05
lora_target_modules:
- q_proj
- v_proj
- k_proj
datasets:
- path: /workspace/FinLoRA/data/train/finlora_sentiment_train.jsonl
type:
system_prompt: ''
field_system: system
field_instruction: context
field_output: target
format: '[INST] {instruction} [/INST]'
no_input_format: '[INST] {instruction} [/INST]'
dataset_prepared_path: null
val_set_size: 0.02
output_dir: /workspace/FinLoRA/lora/axolotl-output/sentiment_llama_3_1_8b_8bits_r8_rslora
peft_use_dora: false
peft_use_rslora: true
sequence_len: 4096
sample_packing: false
pad_to_sequence_len: false
wandb_project: finlora_models
wandb_entity: null
wandb_watch: gradients
wandb_name: sentiment_llama_3_1_8b_8bits_r8_rslora
wandb_log_model: 'false'
bf16: auto
tf32: false
gradient_checkpointing: true
resume_from_checkpoint: null
logging_steps: 500
flash_attention: false
deepspeed: deepspeed_configs/zero1.json
warmup_steps: 10
evals_per_epoch: 4
saves_per_epoch: 1
weight_decay: 0.0
special_tokens:
pad_token: <|end_of_text|>
chat_template: llama3
```
</details><br>
# workspace/FinLoRA/lora/axolotl-output/sentiment_llama_3_1_8b_8bits_r8_rslora
This model is a fine-tuned version of [meta-llama/Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct) on the /workspace/FinLoRA/data/train/finlora_sentiment_train.jsonl dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2509
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 3
- gradient_accumulation_steps: 2
- total_train_batch_size: 48
- total_eval_batch_size: 24
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 4.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| No log | 0.0007 | 1 | 3.6225 |
| No log | 0.2502 | 372 | 0.2253 |
| 0.2875 | 0.5003 | 744 | 0.2231 |
| 0.1383 | 0.7505 | 1116 | 0.2171 |
| 0.1383 | 1.0007 | 1488 | 0.2199 |
| 0.1134 | 1.2508 | 1860 | 0.2214 |
| 0.0907 | 1.5010 | 2232 | 0.2217 |
| 0.0848 | 1.7512 | 2604 | 0.2090 |
| 0.0848 | 2.0013 | 2976 | 0.2118 |
| 0.0803 | 2.2515 | 3348 | 0.2197 |
| 0.0626 | 2.5017 | 3720 | 0.2119 |
| 0.0628 | 2.7518 | 4092 | 0.2203 |
| 0.0628 | 3.0020 | 4464 | 0.2186 |
| 0.0614 | 3.2522 | 4836 | 0.2530 |
| 0.0496 | 3.5024 | 5208 | 0.2486 |
| 0.0489 | 3.7525 | 5580 | 0.2509 |
### Framework versions
- PEFT 0.15.2
- Transformers 4.51.3
- Pytorch 2.8.0.dev20250319+cu128
- Datasets 3.5.1
- Tokenizers 0.21.1 |